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Abstract
In solar physics many questions remain unanswered, such as the solar coronal heating problem
in the solar atmosphere or magnetic field generation in the solar interior. However, there is a
growing consensus that many different physical phenomena will combine to give a solution to
these problems.

From the solar coronal heating point of view, one possible phenomenon to study is resonant
absorption, which allows the natural transfer of wave energy to and from the background plasma.
If the plasma is dissipative this energy can be converted into heat. One of the stumbling blocks
when studying resonant absorption is that linear theory can breakdown around the resonant point.
This causes a dilemma: use linear theory as an approximation regardless to try and find sensible
solutions or try and solve the difficult, but realistic, nonlinear equations.

The present thesis will investigate the nonlinearity associated with resonant absorption. There
are two different resonances in solar plasmas, one is the Alfvén resonance and the other is the
slow resonance. Previous studies, in nonlinear theory, have concentrated mainly on the slow
resonances as they are more affected by nonlinearity. We will study both the Alfvén and the
slow resonances. The present thesis will analytically investigate these resonances in anisotropic,
dispersive and dissipative plasmas - typical conditions of the solar upper atmosphere.

The second manifestation of nonlinearity is the generation of a mean shear flow outside the
layer enclosing the resonant surface. We will derive the governing equations for this gener-
ated flow at the Alfvén resonance. These flows (like all flows) are completely determined by
the boundary conditions and we produce an example flow.

The thesis culminates by studying coupled resonances; when the distance between an Alfvén
and slow resonance is so small (in comparison to the incoming wave) they act as if they interact
with an incoming wave simultaneously. We derive the governing equations for the absorption of
fast magnetoacoustic waves at the coupled resonance, and then numerically analyse the coeffi-
cient of wave energy absorption to compare with the results found for single resonances. We find
that the absorption of fast magnetoacoustic waves is far more efficient under coronal conditions
compared with chromospheric conditions despite an increase in absorption due to the coupled
resonance.
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1
Introduction

The present chapter is an introduction to the thesis. We begin by familiarizing ourselves with the Sun
and its overall properties. Drawing on both theoretical and observational evidence we describe the types of
possible magnetohydrodynamic waves and different heating mechanisms available in the solar atmosphere.
Additionally, the concept of solar magnetism is discussed. The chapter then points out and conveys the
importance of nonlinearity within physics and why it is critical to the work presented in the present thesis.
The last section will describe the outline of the present thesis and what we intend to cover.

The Sun is a mass of incandescent gas, a gigantic nuclear furnace;
where hydrogen is built into helium at temperatures of millions of degrees...

(Why does the Sun shine?, They Might Be Giants)

1
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1.1 Overall properties of the Sun

The Sun is a fairly ordinary yellow dwarf star; however, its close proximity to Earth makes it
unique as it is the only star we can observe in high resolution. Studying the Sun is not only
of immense importance for the understanding of stars, stellar plasmas and the galaxy, but also
serves as a natural laboratory for processes such as fusion, heating, magnetic dynamo, etc. A list
of the Sun’s overall properties are given in Table 1.1 along with the corresponding properties for
the Earth for comparison1.

Table 1.1: Some of the overall properties of the Sun and Earth.

The numbers when dealing with the Sun can be enormous, so we draw attention to the ratios
in Table 1.1. The Sun is approximately 4.5 × 109 (4.5 billion) years old, and loses about 109 kg of
mass a second. The majority of the mass loss is through nuclear fusion; the process which pro-
duces the Sun’s energy. Some other interesting facts about our closest star are: the mean distance
between the Earth and Sun is 1.49×1011 m [93 million miles or 1 Astronomical Unit (AU)], which
takes light 8 minutes to travel; the radiation emitted by the Sun amounts to about 1 kWm−2 at
the Earth’s surface; the average rotational period of the Sun is 28 days; and the temperature at the
Sun’s surface (the surface we see with the naked eye - not recommended!) is about 5700 K.

The Sun is is a huge ball of plasma held together, and compressed, under its own gravitational
attraction. It consists of hydrogen (H) [90%], helium (He) [10%] and a tiny proportion of other
heavier elements [1%]. Figure 1.1 shows the percentage composition of the photosphere in terms
of the 10 most abundant elements. Within the Sun the heavier elements (C, N and O) are present
in roughly the same proportions as on Earth, which alludes to a common ancestor such as the
interior of an older star.

The Sun is usually divided into two main regions, the interior and outer atmosphere. The divide
comes naturally from the fact that there is a visible surface to the Sun, known as the photosphere,
beneath which lies the interior and above it the outer atmosphere. The photosphere is simply the
layer above which the gases are too cool or too thin to radiate a significant amount of light and
is, therefore, the surface most readily visible to the naked eye. A schematic representation of the
structure of the Sun is given in Fig. 1.2.

1Note that the rotational velocity in the table refers to the equatorial speed.
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Figure 1.1: The photospheric composition of the photosphere’s 10 most abundant elements. H ≈
74%, He ≈ 25% and the rest contribute ≈ 1%.

Figure 1.2: Schematic representation of the structure of the Sun and major features in its atmo-
sphere: 1. Core; 2. Radiative zone; 3. Convection zone; 4. Photosphere; 5. Chromosphere; 6.
Corona; 7. Sunspots; 8. Granules; 9. Prominence (Pbroks13, 2009).
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1.1.1 Interior

The interior of the Sun is shielded from our view due to the opacity of the photosphere. However,
we know that the solar interior is made up of four separate regions defined by the dominant pro-
cesses taking place. The regions in question are called the core, the radiative zone, the tachocline
and the convective zone.

The core contains half the mass of the Sun in only 1/5 of its volume and generates practically all
of the energy. This energy is produced by fusing hydrogen into helium (nuclear fusion). The tem-
perature and density in the core are 1.6×107 K (160 million degrees Celsius) and 1.6×105 kgm−3

(approximately 10 times the density of gold), respectively. At these extraordinary temperatures
and densities, the protons are so close together that (after quantum tunnelling) the strong nuclear
force can overcome the electrostatic repulsion between the protons. This results in fusion and a
mass loss, which corresponds to the energy released. The core burns up to 5 × 109 kg (5 million
tonnes) of hydrogen a second. This process is extremely slow, taking (on average) the order of
ten million years to complete a single cycle. In one cycle, the hydrogen is converted to helium
according to the reaction:

41H → 4He + 2e+ + 26.7 MeV,

where the energy is released in the form of two high-frequency γ-rays (26.2 MeV) and two neu-
trinos (0.5 MeV) [1 MeV ≈ 1.602 × 10−13 J]. To put things into context, this results in a power
density of just 193 × 10−6 Wkg−1, whereas a human body produces heat at a rate of approxi-
mately 1.2 Wkg−1 (approximately 6000 times greater). However, the Sun is much much more
massive than a human body!

The neutrinos are so minuscule that they escape the core (and the entire Sun) unimpeded. The
γ-rays’ (or photons’) journeys are much more extravagant. They travel outwards by radiative
diffusion (the γ-rays are absorbed, emitted and re-emitted many times by atoms, as well as being
scattered by electrons resulting in the random walk motion). When they reach the edge of the core
- where nuclear fusion can no longer be sustained (about 25% of the distance to the photosphere,
in other words 175000 km from the centre of the Sun), they enter a new region called the radiative
zone.

Inside the radiative zone, the γ-rays continue their radiative diffusion. This radiation causes
the γ-rays’ frequency to increase. The radiative zone extends to about 75 − 85% of the distance
to the photosphere and over this distance the temperature drops from 7 million K to 2 million K.
The density also drops, from 2 × 104 kgm−3 to 2 × 102 kgm−3 (a fifth of the density of water).
Eventually, at the top of the radiative zone there is a very thin transition region - known as the
solar tachocline.

The solar tachocline is the transition layer where the plasma goes from being quiescent and
radiative to being convectively unstable. The instability is caused by a steep temperature gradi-
ent. The tachocline is conjectured to be the place where the solar dynamo exists and produces the
solar magnetic field. It is also at this point that differential rotation in the Sun begins. Below the
tachocline the Sun rotates essentially as a solid body, but above this point it rotates differentially;
with the poles rotating slower than the equator (see Fig. 1.3).

The convection zone extends from the solar tachocline to the photosphere. In this region the
γ-rays that originated in the core are nearly at the end of their journey out of the Sun. Heat
is transferred in this region by ‘blobs’ of hot plasma rising (expanding and cooling) and blobs
of cooler plasma falling in a convective motion. The change in density in the convection zone
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Figure 1.3: Model of the differential rotation of the Sun. The colour spectrum is defined from blue
(slowest) to red (fastest).

takes it to 2 × 10−4 kgm−3 (0.017% the density of air at mean sea level) at the photosphere. The
temperature at the top of the convection zone is 5800 K. It is only above the photosphere that the
plasma becomes optically thinmeaning the photons can finally be released from the Sun and head
out towards outer space. This journey, from the solar core to the photosphere (which would take
2 seconds in free space), has taken the photons 107 (10 million) years to complete.

1.1.2 Outer atmosphere

The outer atmosphere is the part of the Sun we can observe directly with, e.g. the ultraviolet (UV),
visible or infrared (IR) spectrum. The solar atmosphere (like the solar interior) can be divided into
four regions, however, instead of being defined by the dominant processes taking place within the
regions, they are defined by the evolution of temperature and density in the regions. The regions
of the solar atmosphere are known as the photosphere, the chromosphere, the transition region
and the corona. A table of the average densities of the regions of the outer atmosphere (including
the solar wind) is given in Table 1.2 (with the solar core as a comparison).

Table 1.2: Typical densities and temperatures throughout the solar outer atmosphere.
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The lowest part, the photosphere, is an extremely thin (of the order of a few 100 km) layer of
plasma at approximately 5700 K. This layer is opaque and emits most of the solar radiation. It
is the ’surface’ of the Sun we can see from Earth with the naked eye. The photosphere has a
plethora of features within it; Fig. 1.2 shows two of them; sunspots and granules. Figure 1.4 gives a
high resolution observation of a pair of sunspots and granulation. Sunspots are regions of intense
magnetic activity where convection is inhibited by strong magnetic fields. Since magnetic fields
exert a pressure, the plasma pressure inside a sunspot does not need to be as great as the plasma
pressure elsewhere in the photosphere such that the total pressure remains constant, therefore,
the sunspot radiates less light than the rest of the photosphere and so looks darker (note, if you
were to block out the rest of the photosphere and look at a sunspot you would still go blind!).
The granules are cells of convective motions, and we can actually observe meso- super-granules,
which are much larger than individual granulations. These granulations are constantly changing
thanks to the convective motion below; it looks similar to the top of a pan of boiling water. The
photosphere is a very dynamic region, observations show that the entire region oscillates with
a period peaked around 3− and 5− minutes. This global oscillation is used to probe the inner
structure of the Sun using helio-seismological techniques.

Figure 1.4: Detailed observation of a sunspot and photospheric granulation (courtesy of A.
Hanslmeier, SVST at La Palma).

The layer above the photosphere is the chromosphere (originating from the Greek word for
‘colour’). This region can be split into three further regions the lower, middle and upper chromo-
sphere. The lower chromosphere extends from the photosphere to above the temperature minimum
(0−700 km above the photosphere), the middle chromosphere is located within the relatively tem-
perature stable region between 700−1700 km above the photosphere and the upper chromosphere
begins with a jump in temperature followed by a steady increase in temperature to the transition
region (1700 − 2300 km above the photosphere). The chromosphere can be observed in, e.g. Hα

(656.28 nm) or Hβ (486.13 nm) [1 nm=10−9 m]. The chromosphere is abundant in various mag-
netic activities and exhibits features such as a network of magnetic field elements, bright plages
around sunspots, dark filaments observed on the disk and prominences on the limb (see Fig. 1.2).

The transition region is located between 2300−2800 km above the photosphere and is so-called
because there is a steep transition in temperature from 20,000 K to 500,000 K. The transition region
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is highly inhomogeneous and acts as a buffer zone between the corona and the much cooler
chromosphere. We can observe the transition region from space using, e.g. CIV and OVI emission
lines, which are in the UV spectrum.

The final region of the outer atmosphere is the solar corona which is the hottest region of the
solar outer atmosphere (see Fig. 1.5 for the temperature change from the photosphere to the
corona). The corona extends from 2800 km above the photosphere right out beyond 1AU (15×1010

m) via the solar wind. The corona (only visible during total solar eclipses before the space age)
takes its name from the Latin word for ‘crown’. The corona has many features such as streamers,
polar plumes, coronal arcades, coronal mass ejections (CMES), flares, coronal rain and the solar
wind, which are all manifestations of the magnetic field at coronal level. The frequency of these
magnetic entities vary with the solar cycle which repeats, on average, every 11 years (see Fig. 1.6
which shows the number and location of sunspots with time).

Figure 1.5: The variation of temperature with height throughout the solar outer atmosphere. The
temperature is represented on a logarithmic scale. Image reproduced from Athay (1976).

Although the solar atmosphere’s regions seem to contain plasma with vastly different physical
properties, in reality the entire atmosphere is permeated by the solar magnetic field. Magnetism
is the key to understanding the Sun (especially its atmosphere). Magnetic field is produced in-
side the Sun by the flow of electrically charged ions and electrons (thought to originate in the
solar tachocline). Sunspots are places where very intense magnetic lines break through the pho-
tosphere. The sunspot cycle results from the recycling of magnetic fields by the flow of material
in the interior. The prominences seen floating above the surface of the Sun are supported, and
threaded through, by magnetic fields. The streamers and coronal loops seen in the corona are
shaped by magnetic fields. Magnetic fields are at the root of virtually all of the features we see
on the Sun. Magnetic field lines loop through the solar atmosphere and interior to form a compli-
cated web of magnetic structures. Many of these structures are visible in the solar chromosphere
and corona. However, the magnetic field is usually measured in the photosphere. For a more
detailed review of the solar magnetic field, we refer to, e.g. Balogh and Thompson (2009); Parker
(2009) [and references therein].

We have covered the overall features of the Sun in this section, however, each item included
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Figure 1.6: The butterfly diagram, and average daily sunspot plot of solar sunspots for several
solar cycles (courtesy of David Hathaway, NASA).

here can be expanded and explained in greater detail. For the sake of brevity, we refer to four
example books which cover the structure of the Sun further, namely Priest (1984), Mariska (1992),
Golub and Pasachoff (1997) and Aschwanden (2004).

1.2 MHDWaves

The dynamical response of the plasma in the solar atmosphere to the rapid changes in the inte-
rior can be manifested through wave propagation within the solar atmosphere. Many of these
waves are in the magnetohydrodynamic (MHD) spectrum. In this section we give a qualitative
discussion of the MHD waves present in the solar atmosphere based on theory and observations,
however, we do not derive any dispersion relations or mathematical models giving the evolution
of the waves. In Sect. 2.2 we will deal with the mathematics and theory of unbounded homo-
geneous MHD waves, this is also where we will derive the dispersion relations. The section is
intended as an introduction into the different types of MHD waves and where they are observed
within the solar atmosphere. In addition, we will, briefly, discuss the history of the observations
of global oscillations.

Ordinary sound waves in air owe their existence to the restoring force created by a gas pres-
sure gradient. If we introduce a magnetic field to this system we create two more restoring forces,
the magnetic tension and magnetic pressure gradient. If we assume that the plasma is homoge-
neous (every element of the plasma is identical to any other element) and infinite, the ideal MHD
equations predict the existence of three different types of waves called the slow magnetoacoustic,
Alfvén and fast magnetoacousticwaves (if gravitational and non-inertial forces are neglected).

The slow magnetoacoustic (or just simply slow waves) waves are driven by the magnetic and
plasma pressure interacting destructively, whereas the fast magnetoacoustic (FMA) waves are
produced when the magnetic and gas pressure interact constructively. The Alfvén wave has an
intermediate wave speed, and is entirely driven by the magnetic tension. A polar diagram of the
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phase speeds of these three wave types is given in Fig 1.72. We can see from Fig. 1.7 that slow
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Figure 1.7: Polar plot of the phase speeds of the three types of MHD waves. The magnetic field
lines lie parallel to the horizontal axis. Here the sound speed (cS) is 70% of the Alfvén speed
(vA). The Alfvén speed and sound speed are given by the dashed and dotted line, respectively
(Aschwanden, 2004).

waves travel fastest at very small angles off parallel to the magnetic field lines and fast waves
travel in any direction, with a larger speed when they propagate perpendicular to the ambient
magnetic field lines. Alfvén waves have a preference to transport energy along field lines and
never across them (analogous to vibrations on a guitar string). The properties of these three
waves are given quantitatively in Sect. 2.2.

It was recognised a long time ago that solar and space plasmas are in fact inhomogeneous,
with physical properties varying over length scales much smaller than the scales determined
by the gravitational stratification. Homogenous plasmas have a spectrum of linear eigenmodes
which can be divided into the slow, fast and Alfvén subspectra (as described above). The slow
and fast subspectra have discrete eigenmodes whereas the Alfvén subspectrum is infinitely de-
generated3. When a transversal inhomogeneity is introduced the three subspectra are changed.
The infinite degeneracy of the Alfvén point spectrum is lifted and replaced by the Alfvén con-
tinuum along with the possibility of discrete Alfvén modes occurring, the accumulation point of
the slow magnetoacoustic eigenvalues is spread out into the slow continuum and a number of
discrete slow modes may occur. Finally, the fast magnetoacoustic point spectrum accumulates at
infinity (see, e.g. Goedbloed, 1975, 1984). Excitation of local Alfvén or slow oscillations provides
a means for dissipating the wave energy far more efficiently in a weakly dissipative plasma than
damping within a uniform plasma.

The solar atmosphere is highly structured throughout. In the case of the atmosphere we have
large gradients which are created by the magnetic field. The magnetic field tends to accumulate
in entities known as flux tubes and this imposes a strict ordering. The process of emergence of
flux tubes is believed to be caused by the massive convective motions below the photosphere.
Within the photosphere itself, stratification is dominated by the pressure and density gradients.
In the light of all this structuring, we would expect there to be an abundance of MHD oscillations
and waves present within the solar atmosphere. A detailed summary of the magnetic structuring
within the solar atmosphere and an observational review of the waves they support can be found

2The derivation of the dispersion relations needed to plot this diagram is given in Sect. 2.2.
3An infinite number of discrete points
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in, e.g. Roberts (1988); Zirker (1993); Nakariakov and Verwichte (2005); Banerjee et al. (2007);
Erdélyi (2008). The observed MHD waves may play a role in complicated problems of the solar
atmosphere, e.g. the heating of magnetic structures in the solar upper atmosphere.

Global oscillations of the Sun were first observed by Leighton et al. (1962) who detected os-
cillations with periods of around 5−minutes. These oscillations were not understood until they
were viewed in conjunction with the observations of Deubner (1975) and the theoretical studies by
Ulrich (1970); Leibacher and Stein (1971). These 5−minute oscillations are, in fact, global acoustic
modes throughout the Sun, the so-called pressure or p-modes. After the p-modes were isolated,
several new branches of solar physics began namely, helio- and astro- seismology. A detailed review
of helio- and astro- seismology can be found in, e.g. Erdélyi (2006); Thompson (2006); DiMauro
(2008); Korzennik (2008); Thompson and Zharkov (2008).

Beckers and Tallant (1969) were the first to detect oscillations within sunspots and since then
even greater complexity has been discovered. A 3−minute and 5−minute oscillation exist in
most sunspots’ umbrae, where the 3−minute mode is more intense. The penumbrae also exhibit
oscillations, but they tend to have periods of 4−minutes or longer (see, e.g. Lites, 1988). Zirin and
Stein (1972) first detected so-called penumbral waves which are waves that have coherent wave
fronts and appear to be produced within the umbra and then propagate across the penumbra with
speeds of around 20 − 35 kms−1. Within the photosphere and chromosphere there is a hierarchy
of magnetic structures ranging from sunspots (with scales of the order of 107 m), to pores and
knots (of the order of 105 m) and right down to intense magnetic flux tubes (which can be of the
order of 102 − 103 m). These intense magnetic flux tubes have drawn large amounts of theoretical
attention because they are thin; this allows the thin tube approximation to be applied, simplifying
the governing equations considerably. The thin tube approximation was first used by, e.g. Spruit
(1981); Spruit and Roberts (1983); Thomas (1985), but is still used today within solar physics by,
e.g. Ballai et al. (2006); Goossens et al. (2008); Ballai et al. (2008); Erdélyi and Morton (2009).

Rigorous analytical studies of MHD waves began in the 1970s, but was developed further
in the study by Roberts (1981a); where they studied MHD waves at a magnetic surface in an
unbounded homogeneous plasma and derived the dispersion relations for the magnetoacoustic
waves described in the present section. The work was continued in Roberts (1981b); Edwin and
Roberts (1982); Roberts and Mangeney (1982); Edwin and Roberts (1983); Roberts et al. (1984).
These studies extended the investigation of MHD waves to cases where the plasma environment
was a magnetic slab, and furthered this by considering a magnetic tube. The critical finding of
these seminal studies was the introduction of the concept of an interface or discontinuity in an
otherwise homogeneous plasma; this led to the conclusion there are two further types of waves,
the so-called surface and body waves, which can propagate within and along magnetic structures.
Surface waves are geometrically confined to the surface of the slab/tube and the body waves are
geometrically confined within the slab/tube (see Fig 1.8). Surface and body waves can be further
sub-divided. The first and second modes are sausage and kinkmodes, respectively, while the third
mode is the fluting mode. Sausage modes do not displace the symmetry axis of the tube, whereas
the kink modes move the axis with the motion (see Fig 1.9). Fluting modes have much less energy
compared with the energy of a kink mode (Terradas et al., 2007), so they are not considered in the
present thesis. In nature true discontinuities do not exist, however, large gradients may develop
due to a structuring being present which may act like a discontinuity. Kink modes have been
observed in the solar corona by, e.g. Nakariakov et al. (1999); Aschwanden et al. (1999a); Ofman
and Wang (2008); Erdélyi and Taroyan (2008); O’Shea and Doyle (2009) while sausage modes have
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been observed in coronal loops by, e.g. Aschwanden (2003); Erdélyi and Taroyan (2008). Alfvén
waves avoided detection for many years, indeed on several occasions when they were believed to
be observed (Tomczyk et al., 2007; DePontieu et al., 2007), the waves turned out to be kink modes
(van Doorsselaere et al., 2008). However, recently, Alfvén waves were correctly detected in the
solar lower atmosphere by Jess et al. (2009).

Figure 1.8: Schematic diagram of surface and body waves. Both waves are evanescent outside the
inner structure. Surface waves have maximum energy at the interface, while, in the case of body
waves, the energy remains inside the structure.

Figure 1.9: Schematic diagram of kink and sausage modes. The kink mode oscillates so that the
symmetry axis is perturbed, whereas sausage modes do not alter the symmetry axis.

The further we move from the photosphere the more dominant the magnetic pressure becomes
over the gas pressure. Consequently, the Alfvén speed (i.e. the propagation speed of Alfvén
waves) increases rapidly with height. The corona is a region where the magnetic field dominates
the physics and the plasma tends to accumulate preferentially along the magnetic field lines. This
gives an ideal medium for MHD waves to propagate. Figure 1.10 shows typical coronal arcades
where MHD waves propagate in abundance (see discussion above about kink and sausage mode
propagation). It has been proposed that MHD waves may provide some of the heating required to
maintain the high temperatures observed in the solar corona; in particular, the heating of coronal
loops and arcades. A brief review of these, and other types of heating mechanisms, is included in
the next section.
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Figure 1.10: Coronal arcades within the solar corona. The left image is seen in 171Å and the right
is viewed in 195Å, which corresponds to temperatures of 106 K and 1.5 × 106 K, respectively
(TRACE images).

1.3 Heating Mechanisms

The solar corona is a tenuous hot plasma with an average temperature of the order of 1 − 2 × 106

K. This very high temperature is reached far above the photosphere which has a temperature
of only a few thousand degrees Kelvin. Explaining this extremely high temperature is one of
the fundamental problems remaining in solar physics; the so-called coronal heating problem. The
source of the energy producing the heating is simple and was outlined sixty years ago; the only
available source of suprathermal energy to heat the corona comes from the mechanical work of
the convection flows (see, e.g. Biermann, 1946; Schatzman, 1949; Alfvén, 1950; Piddington, 1956;
Osterbrock, 1961). The elusive part of this problem is the precise nature of the connection between
the energy within the convection flows and the solar corona.

The general consensus is that this connection is provided by the magnetic field. This idea was
proposed after it was identified that active regions (particularly coronal loops) have the highest
heating requirements implying that the kinetic energy within the convection flows is transferred
to the magnetic field lines by shuffling their footpoints. If the characteristic time scale (tp) of the
shuffling is introduced and we define the Alfvén transit time as tA = lloop/vA (where lloop is
the characteristic length of the magnetic flux tube and vA is the Alfvén phase velocity) we can
distinguish between two different regimes.

If tp ≫ tA the shuffling is thought to be slow; building up magnetic stress, resulting in the
magnetic flux tube being twisted or braided. The energy can be released via magnetic relaxation,
magnetic reconnection (nano-, micro- flaring) or by a cascade of magnetic energy to very small
length scales (see, e.g. Parker, 1972; van Ballegooijen, 1985; Biskamp, 1986; Priest and Forbes,
1992; Parker, 1993; Priest, 1997; Jain et al., 2006; Sarkar and Walsh, 2008; Birn et al., 2009). These
heating mechanisms are collectively known asDC heating. The present thesis will not consider DC
heating mechanisms, for further details we refer to, e.g Walsh and Ireland (2003); Erdélyi (2004);
Erdélyi and Ballai (2007).

Fast shuffling corresponds to tp ≪ tA; generating magnetoacoustic and Alfvén waves. Due
to the sharp gradients near the footpoints, the majority of MHD waves bounce back and forth
along the magnetic flux tubes. The loop essentially acts as a leaking resonant cavity in which
wave dissipation can occur by means of turbulence enhancement, resonant absorption and phase
mixing (see, e.g. Dobrowolny et al., 1980; Hasegawa and Uberoi, 1982; Heyvaerts and Priest, 1983;
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Goossens, 1994; Matthaeus et al., 1994; Ruderman et al., 1998; Dmitruk and Gómez, 1999; Vasquez,
2005; Mocanu et al., 2008; Galtier, 2009). These processes are the so-called AC heating mechanisms.
There is increasing agreement that all these processes act simultaneously to different degrees of
efficiency throughout the solar corona. The agreement comes as observational data confirms the
abundance of MHD wave propagation in the solar atmosphere, along with the complexity of the
magnetic configuration enabling magnetic heating to occur (see, e.g. Doschek et al., 1976; Feldman
et al., 1976; Cheng et al., 1979; Mariska et al., 1979; Acton et al., 1981; Jess et al., 2009; Vasheghani
et al., 2009). However, even with recent advancements in spatial and temporal resolution we can
still not observe the small scales needed to definitively conclude which dissipative processes are
acting most efficiently within the solar atmosphere.

For all AC heating mechanisms a wave has to arrive at the region where they are to be dis-
sipated. In the past the assumption was that the waves propagate from the photosphere below
due to the magnetic shuffling. If this was the case, the only wave to arrive in the solar corona
would be the Alfvén wave because the sharp gradients within the transition region would cause
the magnetoacoustic slow waves to shock and fast waves to be reflected dissipating their energy
rapidly - but both slow and fast waves have been observed in the solar corona (see, e.g. Ofman
and Wang, 2008; Wang et al., 2009). However, there is another possible explanation: MHD waves
are produced within the solar corona itself by, e.g. reconnection events or instabilities eliminat-
ing the difficulties of travelling to the corona via the transition region (see, e.g. Roussev et al.,
2001a,b,c).

Historically phase mixing and resonant absorption have attracted intense research. These
mechanisms can only occur when there is a transversal inhomogeneity within the plasma medium
where the waves propagate. The phase mixing dissipation mechanism is due to the spontaneous
decay of the free oscillations of the system. When the oscillations on different magnetic surfaces
are initially excited in phase (coherently) the system will gradually evolve such that the oscilla-
tions become out of phase with the neighbouring magnetic surfaces; since each magnetic surface
vibrates with a specific (and different) eigenfrequency. A consequence of this is the development
of large gradients across these magnetic surfaces. This process leads to the creation of progres-
sively smaller length scales and at some point will reach the limit where resistivity and viscosity
operate enabling wave damping to occur. In contrast, resonant absorption involves the excitation
of a single magnetic surface (when considering a single driving frequency); and since this thesis
concentrates on resonant absorption a full introduction to this topic is given in Chapter 2.

1.4 Importance of nonlinearity

In general, to describe realistic physical processes accurately we need a nonlinear mathematical
model. A classical example is modelling a flexible wooden stick. If we apply a transversal force
on both ends of the stick we know, instinctively, that the stick will bend and if the forces are large
enough the stick will break. However, if we use linear equations in our model the stick will just
continue to bend forever; a nonlinear term is needed to explain why the stick would break.

Due to the limited mathematical framework available, only a few (simplified) nonlinear sys-
tems can be described in an analytical way. Numerical simulations have provided greater accessi-
bility and have even given the answers to many problems, nevertheless nonlinearity and its effects
remain an open question. Linearisation is an approximative device used in the study of physical
systems which can give the underlying properties of a process. However, there are many cases in
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which linearisation and the subsequent treatment of a system is not sufficient (such as the prob-
lem illustrated above). Indeed, new phenomena frequently occur in nonlinear problems which
cannot exist in linear systems.

Solutions to nonlinear theories within MHD can be divided into three distinct classes:

• Properties of arbitrarily large disturbances are deduced straight from the full MHD equa-
tions. Integral inequalities are considered to yield bounds on flow quantities; such as the
energy of the disturbances (which gives the stability criteria for growth or decay with time).
These theories are advantageous because they supply mathematically rigorous results with-
out incorporating too many assumptions. These criteria can correspond closely to the ob-
served stability boundaries within the solar environment.

• Numerical simulations attempt to follow the evolution of an initial disturbance by direct
computation of the MHD equations. Considerable success has been achieved within this
field; and with the extraordinary speed at which computers are advancing further develop-
ment is predicted, despite the complexity and sensitivity of numerical procedures.

• Weakly nonlinear theory is based on the idea that the linearised MHD equations provide a
fundamental approximation for very small4 finite amplitude perturbations. Successive ap-
proximations may then be introduced by asymptotic expansion of ascending powers of the
characteristic dimensionless amplitude of the perturbation. This theory has been very suc-
cessful in providing further understanding of processes taking place with the solar atmo-
sphere.

Most of these theories have been developed with full regard to mathematical rigour, producing
significant results for specific limiting cases. Other theories employ more heuristic methods in
questions such as; convergence of the amplitude expansions; or the validity of their truncation
of expansion. The success of modelling realistic physical problems which cannot be solved rigor-
ously can be the only justification for adopting a non-rigorous approach.

Within the context of space physics intense research has been invested into various problems
regarding nonlinear MHD waves in inhomogeneous plasmas. For example, there is an interest
in explaining the Alfvén resonator within Earth’s ionosphere (see, e.g. Sydorenko et al., 2008),
rapid pulsations in the Sun’s corona (see, e.g. Roberts et al., 1984; Rui-Xiang et al., 2003) and in-
terpretting observed phenomena in galactic jets in terms of MHD waves (see, e.g. Roberts, 1987;
Das et al., 2005). Other areas which have drawn significant attention include: the formation of
shock waves and nonlinear interactions generating waves (see, e.g. Wentzel, 1977; Nakariakov
and Oraevsky, 1995; Nakariakov et al., 1997; Wang and Lin, 2003; Chandran, 2008); the appear-
ance of solitons (see, e.g. Roberts and Mangeney, 1982; Belmonte-Beitia et al., 2007; Erdélyi and
Fedun, 2007; Pokhotelov et al., 2007; Fedun et al., 2008); examining wave phenomena in the solar
wind (see, e.g. Mann, 1995; Ballai et al., 2003; Li and Li, 2007). A great effort, in recent years,
has been paid to try to understand wave absorption and heating of the outer atmosphere of the
solar atmosphere (see, e.g. Ruderman and Goossens, 1993; Ruderman et al., 1997b,c,d; Ballai and
Erdélyi, 1998; Ballai et al., 1998a,b; Erdélyi and Ballai, 1999, 2001; Clack and Ballai, 2008, 2009a,b;
Clack et al., 2009a,b).

4This refers to the characteristic dimensionless amplitude of oscillation being much smaller than a characteristic scale;
so it depends on the wave being studied and the physics of the problem. It will be quantified by a nonlinear parameter
introduced in Chapter 2.
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In the context of resonant absorption, the majority of the work has been carried out from a
linear point of view which is a direct result of the difficulties met when considering the highly
nonlinear nature of the MHD equations. Although the driven MHD waves are assumed to be
linear far away from the resonant magnetic surface, the near-resonant behaviour of the waves in
the vicinity of the resonant position may cause linear theory to breakdown; hence we need the
introduction of nonlinear theory.

1.5 Outline of thesis

At the thesis’ core are the concepts of resonance, anisotropy, dispersion, dissipation and nonlin-
earity. We aim to assess the processes taking place at resonance in highly anisotropic, dispersive
and weakly dissipative plasmas. We achieve this in three steps:

• Studying the nonlinear theory of resonant slow waves.

• Investigating the nonlinear theory of resonant Alfvén waves.

• Applying our theories to the nonlinear resonant absorption of fast magnetoacoustic waves.

The present analysis restricts itself, in the most part, to a static background equilibrium. This
restriction is easily relaxed by assuming a steady flow parallel to the magnetic surfaces (v0). In
chapter 6 we, briefly, investigate the effect of equilibrium flows on wave energy absorption.

In Chapter 2 we introduce, in great detail, the concept of MHD equations and MHD waves and
resonant absorption stressing the role resonant absorption has in physics. We review the various
types of dissipation available in the solar atmosphere and discuss which dissipative processes are
most efficient in different scenarios. The Hall term in the generalised Ohm’s law is explained in
detail; including the reasoning behind its importance to this thesis. We present an overview of the
linear and nonlinear approaches to resonant absorption ignited, in the context of solar physics, by
Ionson (1978), Sakurai et al. (1991b) and Ruderman et al. (1997d), respectively. We introduce the
equilibrium model and the mathematical techniques and tools required to tackle the nonlinear
resonant absorption problem.

In Chapter 3 we derive the nonlinear governing equation for the slow resonances in highly
anisotropic and dispersive plasmas. We also formulate the implicit connection formulae for the
jump in quantities across the resonance. This study is applicable to wave heating in the solar
upper atmosphere. The results of this chapter were published in Phys. Plasmas (Clack and Ballai,
2008).

In Chapter 4 we investigate the upper limit of linear resonant Alfvén waves in the solar at-
mosphere. We derive the standard linear governing equation (when nonlinearity is taken into
account). We prove that for large Reynolds numbers, applicable to the solar atmosphere, waves
remain linear in the vicinity of the Alfvén resonant surface if they are linear far from the resonance.
The results presented in this chapter are based on published research in Astron. Astrophys. (Clack
et al., 2009b).

Chapter 5 is devoted to the second manifestation of nonlinearity; the generation of mean shear
flows outside of the layer enclosing the Alfvén resonance. The technique of Reynolds decomposition
is utilised to find the mean and fluctuating parts of variables. The explicit connection formulae for
the derivatives of the mean shear flow are calculated across the resonance. We introduce a simple
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model flow to estimate the magnitude of the shear flows produced. The results of this chapter
has been published in Phys. Plasmas (Clack and Ballai, 2009a).

In Chapter 6 we apply the results found in Chapters 3 and 4 to study the resonant absorption
of laterally impinging fast magnetoacoustic waves. In the case of the slow resonance, we assume
weak nonlinearity and find successively higher order harmonics; after the third order approxi-
mation the outgoing wave is found to be non-monochromatic. For the Alfvén resonance there is
no such difficulty since the governing equation of wave dynamics at the resonance is linear. We
derive the coefficient of wave energy absorption at each resonance and investigate the effect of equi-
librium flow on the wave energy absorption. The results of this paper were published in Phys.
Plasmas (Clack and Ballai, 2009b).

Chapter 7 studies a new concept; called coupled resonance. In this scenario, the slow and Alfvén
resonances are close enough together such that the incoming wave interacts with the Alfvén res-
onance followed by the transmitted wave interacting with the slow resonance before decaying.
This is proposed as a possible heating mechanism for the solar upper chromosphere. We find the
outgoing coupled wave amplitude when a fast magnetoacoustic wave is driven into the region,
and derive the coefficient of wave energy absorption. We numerically analyse the coefficients of
wave energy absorption for the slow, Alfvén and coupled resonance in conditions typical for the
solar upper atmosphere. The results from this chapter have been submitted to Astron. Astrophys.
(Clack et al., 2009a).

Finally, in Chapter 8, we will summarise and list our main results, presenting our conclusions.
In addition, we shall illustrate some further possible studies and investigations that can arise from
the research presented in the thesis.
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2
MHD equations, waves and the concept of

resonant absorption

The present thesis deals with magnetohydrodynamic (MHD) waves in plasmas with transversal inhomo-
geneities. In this chapter we introduce the essential concepts and analytical methods required to carry out
the investigations contained in this thesis. The first section introduces the fundamental MHD equations,
along with the assumptions needed for them to be applicable within solar physics. The next section derives
the dispersion relations for the basic linear MHD waves present in an unbounded homogeneous plasma,
giving quantification of the qualitative discussion in Sect. 1.2. The third section describes resonant ab-
sorption (within the framework of solar physics) in detail; it discusses the manifestations and approaches
of resonant absorption. It also details the applications for resonant absorption along with a review of the
associated literature. The fourth section illustrates and explains the important roles of anisotropic and dis-
persive plasmas in relation to resonant absorption. The section will explain why some of the solar plasma
is anisotropic and dispersive and what the qualitative effects could be. The next section introduces and
performs the standard calculations for linear resonant interactions; the so-called F and G functions are
derived. In the sixth section of this chapter we introduce dimensionless quantities known as the Reynolds
numbers and the concept of nonlinearity parameters. The final section constructs the fundamental math-
ematical method required for a nonlinear approach to resonant absorption which is applied to an isotropic
non-dispersive plasma. We also present the basis of method used throughout the thesis called matched
asymptotic expansion, applied to resonant absorption in solar plasmas for the first time by Ruderman et al.
(1997d).

Do not worry about your difficulties in Mathematics. I can assure you mine are still greater.
(Albert Einstein 1879 − 1955)
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CHAPTER 2. MHD EQUATIONS, WAVES AND THE CONCEPT OF RESONANT

ABSORPTION
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2.1 Magnetohydrodynamics

In order to describe the large scale (macroscopic) behaviour of a fully ionised plasma, a com-
bination of the equations of hydrodynamics (Navier–Stokes), a simplified version of Maxwell’s
equations, Ohm’s law and the equation of state are used.

To build up the MHD theory describing the dynamics of plasmas a significant number of
assumptions have to be applied, for a detailed review we refer to Priest (1984); Aschwanden
(2004); Erdélyi and Ballai (2007). The MHD framework assumes that the plasma is treated as a
continuum. The plasma is also considered to be a single fluid which is in local thermodynamic
equilibrium, according to the Maxwell distribution function. This implies that the length scales of
variations being studied have to be much greater than the typical kinetic plasma scales such as the
ion and electron gyro-radius and time scales of variations have to be longer than the particle col-
lision times. In classical MHD, used in the present thesis, relativistic effects are neglected because
the characteristic speeds we are working with are much smaller than the speed of light. Hence,
the displacement current in Maxwell’s equations is neglected which means that electromagnetic
waves are excluded from the model. Another important consequence of this assumption is that
the magnetic energy density is much larger than the electric energy density.

The MHD equations express the laws of mass, momentum, magnetic induction and energy.
The first equation to write down is the mass continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

where ρ is the mass density and v is the local velocity vector. This is a typical conservation
equation, balancing the rate of change of a quantity in a volume with the flux of the quantity
through the surface that bounds the volume. If the effect of gravity and other non-inertial forces
are neglected, the momentum equation may be written as

ρ
Dv
Dt

= −∇p +
1

µ0
(∇× B) × B+ Dv, (2.2)

where p is the plasma pressure (assumed to be scalar), B is the magnetic field induction vector,
Dv is the divergence of the viscosity tensor, µ0 is the magnetic permeability of free space and the
operator

D

Dt
=

∂

∂t
+ (v ·∇) (2.3)

is the convective (material) derivative. In general, the plasma is subjected to a pressure gradient
∇p, a Lorentz force 1

µ0
(∇ × B) × B per unit volume and a resistance force due to the dissipative

effect Dv. The form of Dv depends on the particular waves being described and the plasma
properties; this will be explained in full in Sect. 2.4.

The induction equation gives the evolution of the magnetic induction and is defined as

∂B
∂t

= ∇× (v× B) + η∇2B +H, (2.4)

where η is the isotropic magnetic diffusivity (a parameter that quantifies the plasma motion across
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magnetic field lines) andH is the Hall term defined by

H =
1

µ0e
∇×

(
1

ne
B×∇× B

)
. (2.5)

Here e is the electron charge and ne is the electron number density. The Hall term and the condi-
tions under which this effect can be important will be discussed much further in Sect. 2.4. Equa-
tion (2.4) has to be supplemented by the equation expressing that the magnetic field is divergence-
free (the solenoidal constraint)

∇ · B = 0. (2.6)

In spite of its simplicity Eq. (2.6) has important meanings. One meaning is based upon the concept
of magnetic flux Φ =

∮
B ·dS (where the integral is taken over a closed surface bounding a plasma

element); if the integral is taken over a surface that completely encloses a volume then no net
magnetic flux will cross the surface. Another meaning is that the magnetic field has no sources as
magnetic monopoles, hence all magnetic field lines must be closed.

The system of equations is completed by two equations connecting the thermodynamic vari-
ables p and ρ. The first is the energy conservation equation which can be written as

D

Dt

(
p

ργ

)
= −

γ − 1

ργ L, (2.7)

where L is the energy loss function (the net effect of all the sinks and sources of energy) and γ is
the ratio of specific heats or the adiabatic index. When the energy losses balance the gains, L ≡ 0,
the energy conservation equation becomes the adiabatic equation, i.e. the entropy of the system
remains constant. The second equation is the equation of state of the solar plasma (considered to
be a perfect gas)

p =
R̃

µ̃
ρT, (2.8)

where R̃ is the gas constant, µ̃ is the mean atomic weight1 and T is the temperature.
The system of Eqs (2.1)–(2.8) are the full set of nonlinear visco-resistive MHD equations. The

MHD equations presented here are nonlinear and difficult to solve except in simplified cases.

2.2 Unbounded homogeneous MHDwaves
In the present section we derive the dispersion relations for slow, Alfvén and fast waves in an
unbounded homogeneous isotropic plasma. The section can be thought of as the quantitative
equivalent of Sect. 1.2. The dispersion relations supply some basic propagation properties of the
waves.

The MHD equations (assuming an adiabatic energy equation) are linearised by writing f(x, y, z, t) →
f0(x, y, z) + f(x, y, z, t), where f is any variable present within the system of MHD equations, f0

is the equilibrium value of f and f is the Eulerian perturbation. All perturbations are supposed to
be much smaller than their equilibrium values. The equilibrium state is assumed to be static.
Removing products of perturbations (which are assumed to be negligible) leads to the linearised
MHD equations:

∂ρ

∂t
+ ρ0∇ · v = 0, (2.9)

1In the literature it is common to find R̃/µ̃ replaced with R̃∗ = R̃/µ̃, and for it still to be called the gas constant.
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ρ0
∂v
∂t

= −∇p +
1

µ
[(∇× B0) × b + (∇× b) × B0] + ρ0ν∇2v, (2.10)

∂b
∂t

= ∇× (v× B0) + η∇2b, 2 (2.11)

∂p

∂t
+ v ·∇p0 =

γp0

ρ0

(
∂ρ

∂t
+ v ·∇ρ0

)
, (2.12)

where b = (bx, by, bz) is the perturbation of magnetic field. The ideal linearised MHD equations
are produced by assuming ν = η = 0 (where ν is the coefficient of kinematic viscosity and η is the
coefficient of magnetic diffusivity).

In an unbounded homogeneous medium permeated by a uniform magnetic field B0ẑ linear
compressional waves are governed by the system (see, e.g. Lighthill, 1960; Cowling, 1976)

∂2 (∇ · v)
∂t2

= (c2
S + v2

A)∇2 (∇ · v) − v2
A∇2

(
∂vz

∂z

)
, (2.13)

∂2vz

∂t2
= c2

S
∂ (∇ · v)

∂z
, (2.14)

where cS is the sound speed, vA is the Alfvén speed3, v = (vx, vy, vz) and ∇2 is the three-
dimensional Laplacian operator. Equations (2.13) and (2.14) can be reduced, by means of algebraic
manipulation, to

∂4 (∇ · v)
∂t4

− (c2
S + v2

A)
∂2

∂t2
∇2 (∇ · v) + c2

Sv2
A

∂2

∂z2
∇2 (∇ · v) = 0. (2.15)

Writing Θ := ∇ · v, we Fourier analyse the perturbations and write

Θ = Θ̂(x)ei(ωt−ly−kz), (2.16)

for frequency ω, and wavenumbers l and k. If the ansatz in Eq. (2.16) is applied to Eq. (2.15), it
can be seen that Θ̂(x) satisfies

d2Θ̂

dx2
− (l2 + m2

0)θ̂ = 0, (2.17)

where the magnetoacoustic parameter, m2
0, is defined as

m2
0 =

(k2c2
S − ω2)(k2v2

A − ω2)

(c2
S + v2

A)(k2c2
T − ω2)

, where c2
T =

c2
Sv2

A

c2
S + v2

A

is the tube (cusp) speed.

If we Fourier analyse the x-dependence in Θ̂, by writing Θ̂ ∼ einx, then Eq. (2.17) becomes

n2 + l2 + m2
0 = 0,

that is
ω4 − k2

(c2
S + v2

A)ω2 + k2
k2c2

Sv2
A = 0, (2.18)

for propagation vector k = (n, l, k). Equation (2.18) is the dispersion relation for the slow and fast

2There is no Hall term in the induction equation as we consider isotropic plasmas, so the Hall currents are negligible
in comparison to the direct conduction.

3As the sound and Alfvén speeds are not used explicitly here, we show their definitions later in Sect. 2.5.
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magnetoacoustic waves. Solving Eq. (2.18) (for ω2) yields

ω2

k2
=

1

2

(
c2

S + v2
A ±

√
(c2

S + v2
A)2 − 4c2

Sv2
A cos2 θ

)
, (2.19)

where θ is the angle between the direction of wave propagation and the magnetic field.
The trivial solution of Eq. (2.15) [∇ · v = 0], for which vz = 0 and neglecting pressure changes

(to linear order), describes the (shear) Alfvén modes with the dispersion relation

ω2

k2
= v2

A cos2 θ. (2.20)

Once the dependence of ω is known the phase diagrams for the magnetoacoustic and Alfvén
waves can be drawn (see Fig. 1.7).

2.3 Resonant absorption

The process of resonance was discovered and described first by Galileo Galilei whilst he was
studying pendulums in the early 1600s; to be accurate he discovered the mechanical resonance.
Nearly 300 years later in 1899 Nikola Tesla (inspired by the work of Galilei) designed and started
work on the magnifying transmitter. The principle behind this device was to transmit a signal
which would be amplified by the natural frequencies of the ionosphere, essentially utilising mag-
netic resonance. It is claimed that they were successful in broadcasting enough power (using this
method) over 26 miles to light 10, 000 Watts worth of incandescent light bulbs. Later in his life
Tesla also claimed to have produced an oscillator that ”you could put in your overcoat pocket”
which could destroy a building by resonance if it was tuned into the natural frequency of a build-
ing, however, these claims were never verified.

More recently, resonance hit headlines when the Millenium bridge (in London) was found to
swing more and more vigorously when people walked on it. All the processes of resonance rely
on one idea: if you drive a system at its natural frequency the system will become more and more
excited as the driving continually deposits energy at the natural frequency. The resonance can
be suppressed by damping mechanisms. Figure 2.1 shows a plot of a driven system for varying
strengths of damping; the resonance occurs when the driving frequency matches the natural fre-
quency of the system. Resonant absorption occurs when the resonance creates a transfer of energy
from (or to) the driver to (or from) the system.

In the solar atmosphere (and other space plasmas) when excited and propagating MHD waves
interact with an inhomogeneous plasma, the waves can transfer energy to / from the plasma.
When the plasma gives up its energy (heat) to the wave, instabilities can be formed, however,
this is not studied in this thesis. As mentioned (briefly) in Sect. 1.3 waves transfer their energy
to the background plasma by the externally driven waves resonantly interacting with the local
oscillation eigenmodes. In Fig. 2.2 we show a schematic picture of resonant absorption; inside the
inhomogeneous layer (marked by the thick black lines) the local oscillation eigenmodes are con-
stantly changing, and at a particular frequency the incoming wave will resonantly interact with
one of the eigenmodes resulting in resonant absorption (providing the frequency of the incoming
wave matches the local frequency of the plasma). Theoretically MHD resonance can take two
basic manifestations:
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Figure 2.1: The transmissibility (output/input) plotted against the frequency ratio of a driven
system. Resonance occurs when the ratio between the driving and natural frequencies is unity.
Progressive damping is shown by the black lines. The damping coefficient, δ, is a multiple of
the natural frequency, ω0, which leads to the dimensionless damping ratio, c = δ/ω0. Hence,
the larger c (and δ) the more effective the damping. The red line represents the envelope of
oscillations and the blue line represents the maximum growth curve (Ogata, 2003).

Outgoing wave

Magnetic slab

Resonant point

Incoming wave

Figure 2.2: A schematic representation of laterally driven resonant absorption in a plasma slab.
The thick black lines represent the boundaries of an inhomogeneous layer and the curved line
within represents the changing frequency of local oscillation eigenmodes (Erdélyi, 1996).

• The first type is analogous to a resonant cavity in acoustic or optical physics. These models
have the wave confined to a waveguide, e.g. a coronal loop with photospheric boundaries
(acting as partial reflectors). This type of absorption was studied by, e.g. Davila (1987);
Nocera and Ruderman (1998); O’Shea et al. (2007).

• The second type involves an external driver that excites the plasma oscillations. This causes
resonant absorption to occur. There are two classes for the driven problem: direct driving
and indirect driving. Direct driving involves shaking the magnetic field lines explicitly, e.g.
at their photospheric footpoints (see, e.g. Ruderman et al., 1997a,b; Tirry et al., 1997; DeGroof
and Goossens, 2000; DeGroof et al., 2002) whereas indirect driving is when a carrier wave
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is needed to transport the energy across the magnetic surfaces (see, e.g. Poedts et al., 1989,
1990a,c,d; Sakurai et al., 1991a; Goossens and Poedts, 1992; Erdélyi, 1997).

At the position where the resonant condition is satisfied the global wave motion will be lo-
cally in resonance with the external driver on a particular magnetic surface (Ionson, 1978). In the
context of plasma physics, a resonance will occur if the frequency of external waves matches a
frequency in the slow or Alfvén continuum (explained earlier). Analytical solutions and connec-
tion formulae for resonant Alfvén and slow MHD waves in linear ideal MHD were first derived
by Sakurai et al. (1991b). They assumed that the ideal MHD conservation law remained valid in
dissipative MHD and subsequently obtained analytical solutions in dissipative MHD in terms of
Hankel functions of order 1/3. Goossens et al. (1992) derived the jump conditions and the conser-
vation law for resonant slow and Alfvén waves in steady equilibrium states in linear ideal MHD.
Goossens et al. (1995) showed that the ideal MHD connection formulae found by Sakurai et al.
(1991b) remain valid in dissipative MHD. They obtained an elegant formulation of the dissipative
solutions in terms of so-called F and G functions. This formulation helps to understand the basic
physics of driven resonant waves. In addition, the jump conditions and the conservation law
make it possible to compute the amount of absorbed wave energy without solving the dissipa-
tive MHD equations. Ruderman and Roberts (2002) uncovered the equations that show resonant
absorption at work in damping solar coronal loop oscillations.

The absorption of resonant Alfvén waves has been studied intensively for the past few decades.
Here, for the sake of brevity, we list only three of the areas investigated (which are relevant to this
thesis). Resonant absorption was studied as a means of supplementary heating of fusion plas-
mas, but was later rejected due to technical difficulties (see, e.g. Tataronis and Grossmann, 1973;
Grossmann and Tataronis, 1973; Chen and Hasegawa, 1974; Hasegawa and Chen, 1976; Goed-
bloed, 1984; Poedts et al., 1989; van Eester et al., 1991; Elfimov, 2000). Resonant absorption has
been investigated as a mechanism of heating and damping coronal loops (see, e.g. Hollweg, 1984;
Ionson, 1985; Erdélyi and Goossens, 1995; Belien et al., 1999; Goossens et al., 2002; Ruderman and
Roberts, 2002; Aschwanden et al., 2003; Andries et al., 2005; Dymova and Ruderman, 2006; Ter-
radas et al., 2008). Thirdly, resonance has been thought of as a candidate for the absorption of
p-modes in sunspots (see, e.g. Hollweg, 1988; Lou, 1990; Chitre and Davila, 1991; Goossens and
Poedts, 1992; Spruit and Bogdan, 1992; Keppens et al., 1994).

As stated earlier, resonant absorption of MHD waves has an extraordinary range of applica-
tions and has been studied within the context of controlled nuclear fusion reactors, astrophysics
and magnetospheric physics. For controlled nuclear fusion, resonant absorption has been applied
to the tasks of supplying a supplementary heating mechanism in order to achieve the high tem-
peratures required for ignition and as a mechanism to damp global Alfvén waves that are desta-
bilized by fusion-born α-particles. The applications to astrophysics are a possible mechanism for
heating magnetic loops in solar and stellar coronae, the absorption of p-modes by sunspots and
the Alfvén resonance present in spiral galactic arms. Within the framework of magnetospheric
physics we can apply resonance to study flow instabilities and as a diagnostic tool for investigat-
ing magnetospheric properties.

2.4 Anisotropic and dispersive plasmas
The solar and space plasmas are far from being an ideal environment with the plasma dynam-
ics being affected by many dissipative and dispersive effects. The dissipative processes of in-
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terest in this thesis are viscosity, electrical resistivity and thermal conduction, while dispersive
effects are considered to be described by the Hall term in the generalized Ohm’s law. In plasmas
where the magnetic field dominates over any other gas quantities, the dissipative processes are
anisotropic4 and require a different treatment from their isotropic counterparts. Dissipative pro-
cesses are weak in the solar atmosphere; this means that the diffusion coefficients are small. The
rate of dissipation, however, is dependent on the local spatial scales. Traditionally, the local spa-
tial scales would be determined by the internal dynamics, so that the plasma configuration can be
treated within the framework of ideal MHD. Many phenomena (e.g. resonant absorption, current
sheets or turbulence) are inherently non-ideal and nonlinear as they are strongly influenced by
dissipative and dispersive effects. In particular, dissipation is important to nonlinear dynamical
processes because large-scale motions rapidly lead to small-scale structures being formed, which
corresponds to singularities in the ideal theory.

We consider three types of dissipation and one type of dispersion in the present thesis. Vis-
cosity and thermal conductivity are linked to hydrodynamical processes, while electrical conduc-
tivity and Hall dispersion are connected to the presence of the magnetic field. In the context
of solar physics, the general effect of dissipation and dispersion is to relax the accumulation of
wave energy in a system. The relaxation can be performed by, e.g.; converting the wave energy at
resonance to heat by viscous or resistive dissipation or thermal conduction (via resonant absorp-
tion), or the dispersion of energy over a larger area by Hall conduction. The relaxation caused by
dissipation and dispersion prevents the formation of singularities (entities abhorred by nature).

In our derivations we will assume that dissipative and dispersive coefficients are constants.
Let us now, first, discuss how the physical processes in question become anisotropic. The key
quantities in our discussion are the products ωiτi and ωeτe, where ωi(e) is the ion (electron)
cyclotron frequency and τi(e) is the mean ion (electron) collision time. The product ωiτi is im-
portant for viscosity, whereas, the product ωeτe is important for thermal and electrical conduc-
tivity as well as Hall dispersion. If the condition ωiτi ≪ 1 is satisfied, viscosity is thought to be
isotropic and as such Dv in Eq. (2.2) can be written as

Dv = ρν

(
∇2v +

1

3
∇ (∇ · v)

)
, (2.21)

where ν is the kinematic shear viscosity coefficient. If, in addition, we have ωeτe ≪ 1 then ther-
mal conductivity and Hall dispersion are negligible when compared with the isotropic viscosity.
Hence, the isotropic MHD equations are represented by Eqs (2.1)–(2.8) with Eq. (2.21) substituted
for Dv and H = L = 0. This situation reflects the conditions met in the lower part of the solar
atmosphere.

In the upper part of the atmosphere (upper part of chromosphere, corona and solar wind) we
have ωiτi ≥ 1 and so the viscous force is given in its most general form, by Braginskii’s viscosity
tensor, which comprises of five terms. Its divergence can be written as (Braginskii, 1965; Erdélyi,
1996)

∇ · S = η0∇ · S0 + η1∇ · S1 + η2∇ · S2 − η3∇ · S3 − η4∇ · S4, (2.22)

where η0 is the coefficient of compressional viscosity, η1 and η2 are the coefficients of shear vis-
cosity and η3 and η4 are the coefficients of dispersion. Hence, the terms proportional to η0, η1

and η2 in Eq. (2.22) describe viscous dissipation, while terms proportional to η3 and η4 are non-

4The tendency for a process to be directionally dependent.
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dissipative and describe the wave dispersion related to the finite ion gyroradius, hence, will be
ignored in what follows (and in the rest of this thesis). The quantities S0, S1 and S2 are given by

S0 =

(
b ′ ⊗ b ′ −

1

3
I

)
[3b ′ ·∇(b ′ · v) − ∇ · v] , (2.23)

S1 = ∇⊗v+(∇⊗ v)T −b ′⊗W−W⊗b ′+(b ′ ⊗ b ′ − I)∇ ·v+(b ′ ⊗ b ′ + I)b ′ ·∇ (b ′ · v) , (2.24)

S2 = b ′ ⊗W +W⊗ b ′ − 4 (b ′ ⊗ b ′)b ′ ·∇ (b ′ · v) , (2.25)

W = ∇ (b ′ · v) + (b ′ ·∇)v. (2.26)

Here v = (u, v, w) is the local velocity vector, b ′ = B0/B0 is the unit vector in the direction of
the magnetic field, I is the unit tensor and ⊗ indicates the dyadic product of two vectors. The
superscript ‘T’ denotes a transposed tensor.

The first viscosity coefficient, η0, (compressional viscosity) has the following approximate ex-
pression (see, e.g. Ruderman, 2000)

η0 =
ρ0kBT0τi

mp
, (2.27)

where ρ0 and T0 are the equilibrium density and temperature, mp is the proton mass and kB is the
Boltzmann constant. When ωiτi ≫ 1 the other viscosity coefficients are given by the approximate
expressions

η1 =
η0

4 (ωiτi)
2
, η2 = 4η1. (2.28)

The viscosity described by the sum of the second and third terms in Eq. (2.22) is known as the shear
viscosity. For conditions typical of the solar upper atmosphere ωiτi is of the order of 105 − 106,
so according to Eq. (2.28) the term proportional to η0 in Eq. (2.22) is much larger than the second
and third terms. However, it has been long understood that the compressional viscosity does not
remove the Alfvén singularity (see e.g., Erdélyi and Goossens, 1995; Mocanu et al., 2008) while
this task is done by shear viscosity. Hence, when studying slow magnetoacoustic waves in the
solar upper atmosphere we write Dv in Eq. (2.2) as

Dv = η0∇ · S0, (2.29)

whereas when studying Alfvén waves in the solar upper atmosphere we must rewrite Dv as

Dv = η1∇ · S1 + η2∇ · S2. (2.30)

If the condition ωeτe ≥ 1 is satisfied then we have to consider anisotropic thermal conduction.
This process appears as a term in the energy loss function, L, in Eq. (2.7). The expression for heat
flux involves three thermal conduction coefficients κ∥, κ⊥ and κ∧. The thermal coefficient in the
magnetic surface and parallel (perpendicular) to magnetic field lines is κ∥ (κ⊥) and the thermal
coefficient normal to the magnetic surface is κ∧. When ωeτe ≫ 1 the following estimations are
valid

κ⊥

κ∥
≈ (ωeτe)−2 ,

κ∧

κ∥
≈ (ωeτe)−1 . (2.31)

Since in the solar upper atmosphere ωeτe ∼ 105, the perpendicular and normal components of the
heat flux can be neglected in comparison to the parallel component. In this case, for Alfvén waves,
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we neglect the thermal conduction completely as it does not significantly alter the wave dynamics
(since the dominant motions are perpendicular to the magnetic field lines). On the other hand, for
slow waves we must include the thermal conduction, but we only retain the parallel component.
As a result, we write the heat flux as

q = −κ∥b ′ (b ′ ·∇T
)
, (2.32)

and the energy loss function will become L = ∇ · q (where T is the temperature).
The condition ωeτe ≥ 1 means that Hall dispersion needs to be considered. Mathematically,

the Hall currents in Eq. (2.4) arise when off-diagonal terms in the conductivity tensor are consid-
ered. Physically, this pseudo-diffusion manifests itself by the ions and electrons slowly drifting
away from their parent magnetic field lines. Hall currents are only relevant to plasma dynamics
occurring on length scales shorter than the ion inertial length (ion skin depth), di = c/ωi, where c

is the speed of light (Huba, 1995). The Hall term itself is very complicated, as can be seen by its
form in Eq. (2.5), however it can be simplified by estimating the magnitude of each term and then
retaining only the largest. This process must be carried out for slow and Alfvén waves separately;
and is shown in Appendix A. It is found that Hall dispersion plays a key role when considering
nonlinear resonant slow waves, however, plays no significant role when investigating resonant
Alfvén waves because the largest Hall terms in the perpendicular direction relative to the ambient
magnetic field identically cancel.

The final dissipative process to be discussed in this thesis is electrical conductivity. The dissi-
pative coefficient is isotropic provided ωeτe ≪ 1 (only satisfied in the lower photosphere). This
process describes the decay of the magnetic field due to magnetic diffusivity. When ωeτe ≥ 1 the
dissipative coefficient becomes anisotropic, however, the parallel and perpendicular components
only differ by a factor of 2, so in our investigations we use only one of the components for both
without loss of generality. For further details on possible dissipative processes and their impor-
tance, we refer to Braginskii (1965); Priest (1984); Hollweg (1985); Porter et al. (1994); Ruderman
et al. (1997b, 2000); Goossens et al. (2006); Clack et al. (2009b).

All dissipative and dispersive effects strongly depend on the plasma parameters (such as tem-
perature, density, magnetic field strength and pressure) and their magnitude and importance can
be obtained once plasma parameters are known. If the density is measured in kgm−3 and the
temperature is measured in K, then the dissipative coefficients are given as

• The kinematic viscosity coefficient of a fully-ionised hydrogen plasma is (Chapman, 1954)

ν =
2.21 × 10−16T5/2

ρ ln Λ
(m2s−1).

• The isotropic magnetic diffusivity coefficient is given by (Spitzer, 1962)

η = 5.2 × 107 ln ΛT−3/2(m2s−1).

• The coefficient of the parallel component of thermal conductivity can be written as (Priest,
1984)

κ∥ =
1.8 × 10−10T5/2

ln Λ
(Wm−1K−1).

• The coefficients of Braginskii’s viscosity tensor are given by Eqs (2.27) and (2.28).
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The term ln Λ is known as the Coulomb logarithm; it generally has a value between 5 and 22 and
has a weak dependence on temperature and density. For most of the work in this thesis, it would
be adequate to take ln Λ ≈ 20.

It should be noted that viscosity, magnetic diffusivity, thermal conduction and Hall dispersion
affect all waves, however, for particular physical cases, some are negligible compared to others.
In all subsequent chapters we will present a rigorous reasoning for our choices of dissipative and
dispersive processes and / or will refer to the scalings displayed above.

2.5 Resonant interaction of linear MHDwaves
This section reviews the method, which was first developed by Sakurai et al. (1991b), for studying
resonant absorption of MHD waves within a linear framework. The method is based on a series
of simple concepts: dissipation is important in a thin layer called the dissipative layer5 embracing
the resonant surface, outside this dissipative layer we suppose that the plasma is homogeneous
and its dynamics is described by the ideal MHD equations. Figure 2.3 is a schematic picture of
what this method entails. The method produces connection formulae across the resonant position,
so the ideal MHD equations can be used over the whole domain with the exception of the resonant
layer and here the connection formulae can be used to jump over the resonance.

Figure 2.3: Schematic illustration of the methodology used in deriving the connection formulae
across the resonant layer. Here the horizontal line is taken to be the x−direction and δ is the width
of the dissipative layer (either Alfvén or slow).

The system of MHD equations (2.1)–(2.8) must be linearly perturbed, so that linear resonant
absorption can be studied. Every quantity f can be written as the sum of its equilibrium part f0

and its Eulerian perturbation f (as defined in Sect. 2.2). We neglect the stratification effects due
to gravity. In order to have a linear description it is assumed that |f| ≪ |f0|, implying that the
product of two perturbed quantities can be neglected. The linearised system of dissipative MHD

5The dissipative layer is a thin strip of plasma enclosing the resonant position where dissipation is dominant over other
forces. Later on, we will consider the dissipative layer to be the strip where nonlinearity, dispersion and dissipation are
all of equal importance.
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is written as in the system of Eqs (2.9)–(2.12). Part of the basic physics of the resonant MHD waves
can be understood in the context of linear ideal MHD, so we set ν = η = 0 in the system of Eqs
(2.9)–(2.12). Cartesian coordinates are adopted and it is assumed that the equilibrium quantities
depend on the transversal coordinate, x, only. The equilibrium magnetic field is unidirectional
and is aligned with the z−axis. The total pressure balance is given by

d

dx

(
p0 +

B2
0

2µ0

)
= 0. (2.33)

The coordinate system is aligned in such a way that the wave vector k lies in the xz−plane.
The wave vector has two components with respect to B0. Since equilibrium quantities depend on
x only we can Fourier-analyse the perturbed quantities with respect to the other coordinate and
set them proportional to exp(ikz). The perturbations also oscillate with the same real frequency,
hence these quantities are considered to be proportional to exp(−iωt), with ω > 0. The frequency
and phase speed are related by ω = Vk where k is the wave vector in the direction of propagation.
The Lagrangian displacement, ξ̂, is introduced as v = −iωξ̂ and the Eulerian perturbation of total
pressure is P = p + B · b/µ0 (where the second term on the right-hand side denotes the magnetic
pressure).

All but two of the perturbed quantities can be eliminated by algebraic means from Eqs (2.9)–
(2.12). It is then found that the normal component of the displacement and the total pressure
perturbation satisfy a pair of first order differential equations

D
dξ̂x

dx
= −CP,

dP

dx
= ρ0DAξ̂x, (2.34)

where the coefficients DA, DC, D and C take the form

DA = ω2 − ω2
A, DC =

(
c2

S + v2
A

) (
ω2 − ω2

C

)
,

D = ρ0DADC, C = ω4 − k2DC. (2.35)

All the other perturbed quantities can be computed once ξ̂x and P are known. The symbols used
in Eqs (2.34)–(2.35) denote the adiabatic speed of sound, cS, the Alfvén speed, vA, the local Alfvén
frequency, ωA, and the local cusp frequency, ωC. The squares of these quantities are defined as

c2
S =

γp0

ρ0
, v2

A =
B2

0

µ0ρ0
, ω2

A = k2v2
A cos2 α, ω2

C =
c2

Sω2
A

c2
S + v2

A

,

and α is the angle between the magnetic field vector and the z−axis.
The pair of differential equations (2.34) supplemented with boundary conditions defines an

eigenvalue problem with ω2 as the eigenvalue. The system has regular singularities at zeros of
the coefficient D, i.e. for the values of x such that

ω2 = ω2
A(x), ω2 = ω2

C(x), (2.36)

which constitutes the conditions for an Alfvén and slow resonance, respectively. Since ω2
A(x) and

ω2
C(x) are functions of position, the equalities (2.36) define two continuous ranges of frequencies

{min[ωA(x)], max[ωA(x)]} , {min[ωC(x)], max[ωC(x)]} ,
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that correspond to mobile regular singularities of the differential equations (2.34). These two
frequency ranges are known as the Alfvén and the slow continua, respectively (see Sect. 1.2 for full
details). In what follows, we restrict ourselves to the slow continuum by choosing the magnetic
field parallel to the z-axis, i.e. α = 0 (to study the details for the Alfvén continuum refer to, e.g.
Goossens et al., 1995). This assumption means that there will be no component of the wave vector
perpendicular to the equilibrium magnetic field.

Let x = xc be the position of the singular point. We introduce a new spatial variable, defined
as s = x − xc. Elimination of the total pressure, P, from the system (2.34) leads to an ordinary
differential equation for the x-component of the displacement, ξ̂x,

d

ds

[
D

C

dξ̂x

ds

]
+ ρ0DAξ̂x = 0.

If, instead, the normal component of displacement is eliminated from the system (2.34), a differ-
ential equation for P is recovered in the form

1

C

d

ds

[
1

ρ0DA

dP

ds

]
+

1

D
P = 0.

Series expansion of the coefficient functions DA and DC gives a simplified version of the sys-
tem (2.34) which is valid in the interval [−sC, sC] around the resonant position. Here the linear
Taylor expansion is a valid approximation of ω2 − ω2

C(x), hence sC (i.e. the interval around the
slow resonance) has to satisfy the condition

sC ≪
∣∣∣∣
2(ω2

C) ′0
(ω2

C) ′′0

∣∣∣∣,

where the prime denotes the derivative with respect to s. It can easily be seen that the expansion
of DC starts with a term in s, while the series expansion of the other coefficients start with a
constant term. Thus, the governing equation for ξ̂x can be written as

α̃
d

ds

(
s
dξ̂x

ds

)
+ β̃ξ̂x = 0, (2.37)

where α̃ and β̃ are two non-zero constants. The indicial equation of (2.37) has a double root υ̃1,2 =

0, meaning that one of the two independent solutions must have a logarithmic dependence6. Since
the interval only contains one singular point the solution may be written as

ξ̂x(s) =

{
S1f(s) + R1 (f(s) ln |s| + g(s)) , s < 0,

S2f(s) + R2 (f(s) ln |s| + g(s)) , s > 0.

Here S1, S2, R1, R2 are constants and f(s) and g(s) are analytical functions of s. The regular solu-
tion f(s) is called the small solution and the solution containing the ln |s| is called the large solution.
It has been shown that the large variable has to be continuous, whereas the small solution may
jump: R1 = R2, S1 ̸= S2 (Goedbloed, 1983; Goossens and Ruderman, 1995). The solution for ξ̂x

6Determined by using the technique of reduction of order
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then takes the form

ξ̂x(s) = R (f(s)ln|s| + g(s)) +

{
S1f(s), s < 0,

S2f(s), s > 0.
(2.38)

For the total pressure, P, the governing equation is of the form

α̂
d2P

ds2
+

β̂

s
P = 0, (2.39)

where again α̂ and β̂ are constants. The indicial equation yields two roots, υ̂1 = 0 and υ̂2 =

1. The root υ̂2 = 1 gives rise to a s ln |s| contribution to the solution which for |s| ≪ 1 can be
neglected compared to the constant term. It can be shown that for this equilibrium configuration
the total pressure perturbation has no logarithmic singularity (Sakurai et al., 1991b). If the method
presented in Sakurai et al. (1991b) is followed it is obtained that the total pressure is constant
across the singularity and this constitutes a conservation law used later in the thesis.

The dominant singularity for slow waves, however, resides in the component of the displace-
ment parallel to the equilibrium magnetic field lines, described by

sξ̂z =
kc2

S

ρ0∆(c2
S + v2

A)
P, (2.40)

where
∆ = −

d

ds

[
ω2

C(s)
]
0
,

so ξ̂z has a 1/s singularity and a δ(s) contribution which dominates the ln |s| singularity and the
jump found for ξ̂x and P. Due to the singularities in Eq. (2.34), the solutions and their derivatives
diverge at the resonant position s = 0. Therefore, the ideal MHD approximation fails to give
physically acceptable results at the resonance. The singularities can be removed by considering
non-ideal (dissipative) effects. In spite of the fact that under solar conditions non-ideal effects are
weak in the vicinity of the resonant position they play a vital role. Sufficiently far from s = 0

(denoted as the outer region), the ideal MHD solution is an excellent approximation of the ac-
tual solution. However, near the resonant position (the inner region) the character of the solution
changes and the assumption of ideal MHD is invalid. In this region a dissipative, small-scale
solution must be found. Moreover, the Taylor expansions of equilibrium quantities are valid in
a region far wider than the inner region creating an overlap region which is used to match the
solutions from the inner and outer regions.

Using a similar technique as presented in the ideal case, all but two of the variables can be
eliminated from the linearised dissipative MHD equations, leading to an almost identical system
of equations for the x-component of the displacement and the total pressure as in Eq. (2.34). The
only difference is that now the coefficient function DC is expressed as

DC̃ =
(
c2

S + v2
A

) (
ω̃2 − ω2

C

)
,

where ω̃2 is the differential operator

ω̃2 = ω2

[
1 −

i

ω

(
ν +

ω2
C

ω2
A

η

)
d2

ds2

]
.

Now the system, which is the dissipative counterpart of Eq. (2.34), is not singular at s = 0,
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however, the order of these differential equations is raised from two (in ideal MHD) to six (in
dissipative MHD). This rise in order is noted in Fig. 2.3.

In the vicinity of the ideal resonant position the equations describing the evolution of the
longitudinal and transversal displacement and the total pressure can be simplified by using first
order Taylor polynomials for the coefficient functions (see, e.g. Goossens and Ruderman, 1995;
Ballai, 2000) [

s∆ − iω

(
ν +

ω2
C

ω2
A

η

)
d2

ds2

]
dξ̂x

ds
=

ω4
C

ρ0v2
Aω2

A

P, (2.41)

[
s∆ − iω

(
ν +

ω2
C

ω2
A

η

)
d2

ds2

]
dP

ds
= 0, (2.42)

[
s∆ − iω

(
ν +

ω2
C

ω2
A

η

)
d2

ds2

]
ξ̂z =

ikc2
S

ρ0(c2
S + v2

A)ω2
C

P. (2.43)

Dissipation is only important when the terms on the left-hand sides of (2.41)–(2.43) are of the
same order, i.e.

s∆

iω
(
ν +

ω2
C

ω2
A

η
) = O(1).

This results in an isotropic dissipative layer with a thickness δ̃c given by

δ̃c =

[
ω

|∆|

(
ν +

ω2
C

ω2
A

η

)]1/3

, (2.44)

a result first discovered by Sakurai et al. (1991b) (here, as elsewhere in the thesis, the values for
constants are all calculated at the resonant position). In view of the very large Reynolds numbers7

in the solar atmosphere the inequality
sC

δ̃c

≫ 1

is very important in the present discussion. It implies that the interval where the simplified ver-
sion of the dissipative equations are valid contains the dissipative layer and two overlap regions,
one to the left and one to the right of the dissipative layer. Following Goossens and Ruderman
(1995), it is convenient to introduce another new scaled variable r = s/δ̃c, which is of the order of
unity within the dissipative layer, but in view of the inequality sC/δ̃c ≫ 1, s → ±sC corresponds
to r → ±∞. The jump of a quantity Q across the dissipative layer can be calculated by

[Q] = lim
s→0

{Q(s) − Q(−s)}.

Written in the new variable (r) the system (2.41)–(2.43) takes the form

(
d2

dr2
+ i sgn(∆)r

)
dξ̂x

dr
=

iω4
C

ρ0|∆|ω2
Av2

A

P, (2.45)

(
d2

dr2
+ i sgn(∆)r

)
dP

dr
= 0, (2.46)

(
d2

dr2
+ i sgn(∆)r

)
ξ̂z = −

kc2
S

ρ0|∆|δ̃cω2
C(c2

S + v2
A)

P. (2.47)

7Reynolds numbers are a measure of the efficiency of dissipation. The larger the number the weaker the dissipation.
This will be discussed in full in Sect. 2.6.
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The solutions to a system of ODEs of this type were first given analytical form by Sakurai et al.
(1991b) in terms of Hankel functions of a complex argument. Goossens et al. (1995) came up with
a more elegant form where the solutions take the form of constants multiplied by the generalized
F and G functions, which are given by

F(r) =

∫∞

0
exp

(
iqr sgn(∆) −

q3

3

)
dq, (2.48)

G(r) =

∫∞

0

e−q3/3

q
[exp(iqr sgn(∆)) − 1] dq. (2.49)

Equation (2.46) shows that the ideal conservation law for the cusp singularity remains valid in
dissipative MHD. Finally, the jumps in ξ̂x and P across the dissipative layer are

[ξ̂x] = −iπ
ω4

C

ρ0|∆|ω2
Av2

A

P, (2.50)

[P] = 0. (2.51)

The above two relations are important because in knowing them a solution of the full MHD
system does not need to be found inside the dissipative layer for determining the solution ev-
erywhere else in the domain, hence, the solution in the dissipative layer can be circumvented by
the use of connection formulae (jumps) written for the x-component of the displacement and the
total pressure perturbation. Using the asymptotic behaviour of F(r) and G(r), computed by, e.g.
Goossens et al. (1995), it follows that the asymptotic behaviour of ξ̂z for |r| → ∞ is given by

ξ̂z =
ikc2

S

rδ̃c∆ρ0(c2
S + v2

A)ω2
C

P, (2.52)

which recovers the r−1 behaviour of Im(ξ̂z) far away from the ideal resonance position. It should
be observed that the connection formulae for ξ̂x and P are both independent of the dissipative
coefficients, thus the amount of energy absorbed is also independent of those coefficients.

2.6 The nonlinearity parameter and Reynolds numbers

A nonlinear description of resonant absorption requires the introduction of some characteristic
quantities used throughout the present thesis. For our further mathematical consideration we in-
troduce: the dimensionless amplitude of perturbations (ϵ) far away from the ideal resonant position8;
the characteristic spatial scale (lch) which is usually taken to be the characteristic scale of inhomo-
geneity (linh), but can sometimes be taken to be equal to the wavelength of the wave being studied;
the characteristic speed (vch) which is usually taken to be the order of the phase speed of the global
MHD wave (V); the characteristic scale of dissipation (ldiss) predicted to be of the order of R−1/3lch

(see, e.g. Ruderman and Goossens, 1993), where R is the total Reynolds number (defined later).
If it is assumed that the characteristic scale of the perturbations along the dissipative layer is of

the order linh then linear theory predicts that the perturbations of large variables in the dissipative
layer are of the order of ϵlinh/ldiss = ϵR1/3 (see, e.g. Hollweg, 1987; Goossens et al., 1995; Ruder-
man et al., 1997d). Therefore, waves with small dimensionless amplitude far from resonance can

8In this thesis ϵ is always assumed to be small far away from the ideal resonant position (ϵ≪ 1).
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grow in magnitude near the resonant position. As a direct result, linear theory can breakdown
and, hence, nonlinear theory may become important in the dissipative layer.

To measure the magnitude of dissipative coefficients we introduce the dimensionless Reynolds
numbers. In isotropic plasmas where waves are damped by the classical viscosity and resistivity,
the Reynolds numbers are defined as

Re =
vchlch

ν
, Rm =

vchlch
η

,
1

Ri
=

1

Re
+

1

Rm
, (2.53)

where Re, Rm, Ri are the isotropic viscous, magnetic and total Reynolds numbers, respectively. For
anisotropic plasmas we have to define two different sets of Reynolds numbers. For slow waves,
which are susceptible to thermal conduction and compressional viscosity, we have

Re(c) =
vchlchρ0c

η0
, Pe =

vchlchρ0c R̃

κ∥
,

1

Rc
=

1

Re(c)
+

1

Pe
, (2.54)

where Re(c), Pe, Rc are the anisotropic compressional viscous Reynolds number, Péclet number and
compressional total Reynolds number, respectively. Here R̃ is the gas constant and ρ0c = ρ0(xc) is
the density evaluated at the slow ideal resonant position. Alfvén waves are influenced by shear
viscosity and resistivity, so we define

Re(a) =
vchlchρ0a

η1
, Rm =

vchlch
η

,
1

Ra
=

1

Re(a)
+

1

Rm
, (2.55)

where Re(a), Rm, Ra are the anisotropic shear viscous, magnetic and shear total Reynolds numbers,
respectively. Here ρ0a = ρ0(xa) is the density evaluated at the Alfvén ideal resonant position.

When Eqs (2.53)–(2.55) are calculated for the solar atmosphere using the parameters given in
Sect. 2.4 we find that, for the solar photosphere and lower chromosphere, Ri ∼ 106 − 108 and,
for the solar upper chromosphere and corona, Rc ∼ 102 − 103 and Ra ∼ 1010 − 1012. Originally,
these total Reynolds numbers were introduced based on intuition, simplicity and linear theory
(see, e.g. Sakurai et al., 1991b; Goossens et al., 1995; Goossens and Ruderman, 1995; Clack et al.,
2009b). However, it turned out that using these definitions the strength of dissipation is the same
order of magnitude as the inverse of the total Reynolds numbers.

In an isotropic plasma, if g is a large variable9 the typical largest quadratic nonlinear term in the
system of MHD equations is of the form g∂g/∂z, while the typical dissipative term is of the form
ν∂2g/∂x2. Here ν could be replaced by η since they are of the same order of magnitude, however,
to follow convention we use the viscosity coefficient (ν)10. At the beginning of this section, we
discussed that large variables are of the order of ϵR1/3 in the isotropic dissipative layer, but linear
theory also predicts that ∂/∂z = O(l−1

inh), ∂/∂x = O(l−1
diss) and ν = O(R−1

i linh) (see, e.g. Ruderman
and Goossens, 1993). These scalings allow us to estimate the ratio of the largest nonlinear and
dissipative terms11, resulting in the isotropic nonlinearity parameter

Ni =
g∂g/∂z

ν∂2g/∂x2
= O(ϵR

2/3
i ). (2.56)

Therefore, if the condition Ni ≪ 1 is satisfied then linear theory is applicable. On the other

9Linear theory shows that large variables have an ideal singularity (x−xr)−1 in the vicinity of x = xr .
10This convention will be continued throughout this section and thesis.
11The largest nonlinear and dissipative terms are related to velocity.
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hand, if Ni ≥ 1 then nonlinearity has to be taken into account when studying resonant waves in
the isotropic dissipative layers. This inequality implies very restrictive conditions, even for very
small values of amplitude. For example, a dimensionless amplitude ϵ ∼ 0.01 implies that linear
theory is valid provided Ri ≪ 103. In the solar photosphere it is known that Ri ∼ 106, hence
it is not at all obvious from the outset that linear theory is adequate (Ruderman et al., 1997d).
Nonlinearity becomes important in the vicinity of resonance (where it will have the same order
of magnitude as dissipation).

In anisotropic plasmas we have two separate nonlinearity parameters, a unique one for each of
the Alfvén and slow resonances as the two waves have different dominating dissipative processes
acting upon them. For Alfvén waves the procedure is identical to the one undertaken to produce
the isotropic nonlinearity parameter in Eq. (2.56) leading to the anisotropic Alfvén nonlinearity
parameter

Na =
g∂g/∂z

η1∂2g/∂x2
= O(ϵR

2/3
a ). (2.57)

It is clear that Eqs (2.56) and (2.57) are similar in their form. At the slow resonance, anisotropy
changes the characteristic scale of dissipation and so ldiss becomes the order of R−1

c linh. In addi-
tion, the linear theory developed by Ruderman and Goossens (1996) predicts that large variables
in the dissipative layer are of the order of ϵRc. Since the plasma is anisotropic, and the domi-
nant dissipative processes are along the magnetic field lines, the largest dissipative terms are of
the form η0∂2g/∂z2. Taking the ratio of the largest nonlinear and dissipative terms leads to the
anisotropic slow nonlinearity parameter

Nc =
g∂g/∂z

η0∂2g/∂z2
= O(ϵR2

c ). (2.58)

Hence, if the conditions Na ≪ 1 and Nc ≪ 1 are satisfied linear theory is a valid approximation
for anisotropic plasmas. However, if Na ≥ 1 or Nc ≥ 1 then linear theory may breakdown.
For example, a dimensionless amplitude ϵ ∼ 0.01 implies that linear theory is valid provided
Ra ≪ 103 or Rc ≪ 10. We know that Ra ∼ 1012 and Rc ∼ 102 in the solar corona (see, e.g. Priest,
1984; Goossens and Ruderman, 1995; Aschwanden, 2004), hence it is likely a nonlinear theory is
needed.

We should note here that the MHD equations also contain cubic order nonlinearity. In this
case, the largest nonlinear terms would be of the form g2∂g/∂z. If, for any reason, a nonlinear
theory is not found when using the nonlinearity parameters from Eqs (2.56)–(2.58) a theory based
on cubic nonlinearity should be attempted. For the Alfvén resonance, this implies cubic nonlinear-
ity parameters of the form

N
(h)
i =

g2∂g/∂z

ν∂2g/∂x2
= O(ϵ2Ri), N

(h)
a =

g2∂g/∂z

η1∂2g/∂x2
= O(ϵ2Ra), (2.59)

where the superscript ’(h)’ identifies the nonlinearity parameters to be of a higher order of nonlin-
earity compared to the standard parameters. Cubic nonlinearity can only be used when quadratic
nonlinearity does not result in a nonlinear theory, since cubic nonlinearity is weaker than its
quadratic counterpart.

In order to obtain nonlinearity and dissipation of the same order in the dissipative layer, we
assume that the nonlinearity parameter is of the order of unity when deriving the governing equa-
tions for waves inside the dissipative layer. For example, for the isotropic nonlinearity parameter
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we have Ni = ϵR
2/3
i = O(1), i.e. Ri = O(ϵ−3/2). Hence, according to Eq. (2.53) we rescale the

isotropic dissipative coefficients as

ν = ϵ3/2ν, η = ϵ3/2η. (2.60)

This type of scaling is widely applied to problems where nonlinearity and dissipation are chosen
to be of the same order (see, e.g. Edwin and Roberts, 1986; Ruderman et al., 1997d; Nakariakov
and Roberts, 1999; Ballai et al., 2003; Clack and Ballai, 2009a). In a similar manner, we must
rescale the dissipative coefficients for the anisotropic Alfvén and slow dissipative layers. For the
anisotropic Alfvén dissipative layer we have Na = ϵR

2/3
a = O(1), i.e. Ra = O(ϵ−3/2), so the

dissipative coefficients are rescaled as

η1 = ϵ3/2η1, η = ϵ3/2η. (2.61)

In the anisotropic slow dissipative layer we have Nc = ϵR2
c = O(1), i.e. Rc = O(ϵ−1/2), hence we

rescale as
η0 = ϵ1/2η0, κ∥ = ϵ1/2κ∥. (2.62)

Finally, if we consider cubic nonlinearity we have N
(h)
i = ϵ2Ri = O(1), i.e. Ri = O(ϵ−2) and

N
(h)
a = ϵ2Ra = O(1), i.e. Ra = O(ϵ−2), thus the dissipative coefficients in this case are rescaled as

ν = ϵ2ν, η = ϵ2η,

η1 = ϵ2η1, η = ϵ2η. (2.63)

To summarize, we have introduced Reynolds numbers as a measure of the efficiency of dis-
sipation in the solar atmosphere. We have used these Reynolds numbers in combination with
the dimensionless amplitude of perturbations (ϵ) to derive the nonlinearity parameters. In turn,
we have used these parameters to stretch the dissipative coefficients in the dissipative layer. The
Reynolds numbers, nonlinearity parameters and scaling to be used in different scenarios are listed
below:

• When studying resonant waves in isotropic plasmas use Eqs (2.53), (2.56) and (2.60).

• Investigation of slow waves in anisotropic plasmas utilises Eqs (2.54), (2.58) and (2.62).

• For Alfvén waves in anisotropic plasmas use Eqs (2.55), (2.57) and (2.61).

• If cubic nonlinearity has to be considered use the appropriate Reynolds numbers with Eqs
(2.59) and (2.63).

2.7 Methodology for deriving the nonlinear theory of resonant
waves

The calculations carried out in the present thesis require a series of generic mathematical suppo-
sitions and methods which will be presented through the nonlinear treatment of resonant slow
waves in isotropic plasmas first derived in the seminal work by Ruderman et al. (1997d). Ac-
cordingly, new concepts and ideas will be added throughout the section which are critical for the
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thesis. The idea is to draw similarities and differences between this theory and the ones derived
later on in the thesis.

It is well-known that in nonlinear theory perturbations cannot be Fourier-analysed. Therefore,
it is convenient to use the components of velocity, v, instead of the Lagrangian displacements, ξ̂,
as the unknown variables. In Sect. 2.5 we showed that in linear theory all perturbed quantities
are Fourier-analysed with respect to the spatial coordinate z. All perturbations were then taken to
be proportional to exp[i(kz − ωt)]. Hence, the solution of the linear dissipative MHD equations
was found in the form of a propagating wave with a wavelength L = 2π/k, with all perturbed
quantities depending on the combination θ = z − Vt of the independent variables z and t, rather
than on z and t separately. Throughout this thesis, the concept of parallel and perpendicular
components of the velocity and magnetic field perturbation relative to the equilibrium magnetic
field lines is adopted. The definitions of these new quantities are

(
v∥

b∥

)
=

(
v w

by bz

)(
sin α

cos α

)
,

(
v⊥

b⊥

)
=

(
v − w

by − bz

)(
cos α

sin α

)
. (2.64)

Here u, v, w are the x, y, z−components of the velocity perturbations. During our calculations it
is assumed that the equilibrium magnetic field B0 is unidirectional and lies in the yz-plane, and α

is the angle between B0 and the z-axis. In an attempt to match the linear formulation as closely as
possible only solutions in the form of plane periodic propagating waves with permanent shape
are considered, implying that all perturbed quantities depend only on θ, and they are periodic
with respect to θ.

In order to derive the governing equations for wave motions in the dissipative layer a version
of the method of matched asymptotic expansions is used (see, e.g. Nayfeh, 1981; Bender and Ország,
1991). This method entails finding the so-called outer and inner expansions and then matching
them in the overlap regions. This nomenclature is well adopted for the situation here. The outer
expansion is the solution outside the dissipative layer and the inner expansion is the solution
inside the dissipative layer.

With the new variable, θ, the isotropic version of the system of equations (2.1)–(2.8) can be eas-
ily rewritten. Since we are assuming an isotropic plasma, Sect. 2.6 suggests the use of Eqs (2.53),
(2.56) and (2.60). Upon obtaining the scalar versions of Eqs (2.1)–(2.8) we find that they contain
terms proportional to ϵ1/2 and this inspires us to seek solutions in the outer region represented
by asymptotic expansions containing terms of the order ϵ, ϵ3/2 and higher. By carrying out cal-
culations we derive, in the first order, a system of two linear partial differential equations for u(1)

and P(1) which are singular at the Alfvén and slow resonant positions for which the solutions
can be found in the form of Fröbenius expansions. All other variables can be written in terms
of u(1) and P(1). The salient properties of the first order of approximation is that P, v⊥ and b⊥

are regular, u and bx possess logarithmic singularities and ρ, p, v∥ and b∥ are the most singular
with a 1/x singularity. Continuing calculations to higher orders of approximations we find the
dominant singularities remain in the perturbations denoted in the first order of approximation.
Therefore, the whole outer solution for each variable can be written in asymptotic form.

Now that the outer expansions are known, the inner expansions need to be derived (which
gives the solution in the dissipative layer). The inner and outer expansions then need to be
matched in order to derive the governing equation for the perturbations inside the isotropic dis-
sipative layer. The thickness of the isotropic dissipative layer is of the order of linhR−1/3 and we
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have assumed that R = O(ϵ−3/2), so it is convenient to introduce a stretched variable to replace
the transverse coordinate in the dissipative layer ξ = ϵ−1/2x. Equations (2.1)–(2.8) then need to be
written in terms of the new variable, ξ, as well as the variable θ, introduced earlier. The matching
of outer and inner expansions is carried out as follows:

1. Find the inner (fi) and outer (fo) expansions.

2. Obtain the inner expansion of the outer expansion [(fo)i] and the outer expansion of the
inner expansion [(fi)o]. To obtain the inner expansion of the outer expansion x = ϵ1/2ξ is
substituted into the outer expansion and then re-expanded in power series of ϵ at fixed ξ.
The outer expansion of the inner expansion is obtained by substituting ξ = ϵ−1/2x and then
re-expanding in power series of ϵ at fixed x.

3. Make the inner expansion of the outer expansion and the outer expansion of the inner ex-
pansion coincide in the overlap region [(fo)i = (fi)o] to define the matching condition. The
matching condition is that the outer expansion of the inner expansion coincides with the
inner expansion of the outer expansion when x = ϵ1/2ξ is substituted into the former12 (or,
equivalently, ξ = ϵ−1/2x into the latter).

Ruderman et al. (1997d) found (using the method of matched asymptotic expansions) the
inner expansion of all perturbed quantities, however, their derivation was cumbersome and re-
quired detailed mathematical analysis. In the present thesis, we employ the method of simplified
matched asymptotic expansions (see, e.g. Goossens et al., 1995; Ballai et al., 1998b; Clack and Bal-
lai, 2008). Since we study only weakly dissipative plasmas, dissipation is only relevant in a thin
layer enclosing the resonant position. This allowed us to use the linear MHD equations to find
the governing equation outside the dissipative layer. Inside the dissipative layer the amplitudes
of perturbations grow, but (critically) they are assumed to still be small such that asymptotic ex-
pansions can be carried out. We know that | ln ϵ| ≪ ϵ−m for any m > 0 with ϵ → +0, thus, we
assume that lnt ϵ (t ≥ 1) is of the order of unity and is not used in the expansions. Bearing this in
mind we find that the inner expansions of small variables (P, v⊥, b⊥, ux and bx) should be of the
same form as their outer expansions, i.e. asymptotic series starting with a term proportional to ϵ,
whereas large variables (ρ, p, v∥ and b∥) should be of the form of an asymptotic expansion with
the leading term being proportional to ϵ1/2.

The first order approximation yields a linear homogeneous system of equations for the vari-
ables with subscript ’1’. We find that the total pressure perturbation is independent of the transver-
sal coordinate ξ, which parallels the result found in linear theory. In addition, an equation relat-
ing u(1) and v

(1)
∥ is recovered. The second order approximation gives a linear non-homogeneous

system of equations for the variables with the superscript ’2’, which contains a compatibility con-
dition. Once these equations have been rewritten and manipulated accordingly, the governing

12The use of the method of matched asymptotic expansions in its classical form requires a closed analytical solution
for the inner expansion. Since a closed analytical solution has not been obtained, a slightly modified method has been
employed - use the inner expansion of the outer expansion as an asymptotic boundary condition for the inner expansion
(see, e.g. Ruderman et al., 1995). In addition, the inner expansion of the outer expansion is used as a guide line for
prescribing the form of the inner expansion
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equation of perturbations inside the dissipative layer is obtained to be

∆cξ
∂v

(1)
∥

∂θ
−

V
[
(γ + 1)v2

Ac
+ 3c2

Sc

]
v2

Ac
cos α

(
v2

Ac
+ c2

Sc

)2 v
(1)
∥

∂v
(1)
∥

∂θ
+ V

(
ν +

c2
Tc

v2
Ac

η

)
∂2v

(1)
∥

∂ξ2

=
Vc2

Sc
cos α

ρ0c

(
v2

Ac
+ c2

Sc

) dP(1)

dθ
. (2.65)

where
∆c = − cos2 α

(
dc2

T

dx

)

c

.

In Eq (2.65) the driving term is considered to be P(1), and is assumed to be a known func-
tion which is defined by the external conditions. Once the solution of the governing equation
is known, the normal component of velocity can be obtained from the equation relating v∥ to
u(1). Equation (2.65) is identical to the governing equation found by Ruderman et al. (1997d),
which used the full matched asymptotic expansions. Inspired by this result (and the results of
other studies, e.g. Goossens et al., 1995; Ballai et al., 1998b), we will continue to use the simpli-
fied matched asymptotic expansions technique throughout the present thesis. If the amplitude of
perturbations are sufficiently small the nonlinear term in Eq. (2.65) can be neglected. Hence, the
corresponding equation of linear MHD is recovered (see, e.g. Sakurai et al., 1991b).

The next task is to compute the connection formulae across the isotropic dissipative layer,
which is defined as

[f] = lim
ϵ→+0

{fo(ϵ) − fo(−ϵ)}, (2.66)

where fo is the outer expansion of the variable f. When investigating resonant slow waves we
found that the jump in the total pressure was zero. This result parallels the continuity of total
pressure found in the linear theory, for cartesian geometry in Sect. 2.5 [see, Eq. (2.51)] and for
cylindrical geometry in, e.g. Sakurai et al. (1991b). In order to obtain a nonlinear analog to the
connection formulae for the normal component of velocity found in linear theory we need to
introduce new dimensionless variables σi for the transversal coordinate and qi for the parallel
component of velocity perturbations. Outside the dissipative layer the approximations u ≈ ϵu(1),
P ≈ ϵP(1) can be used. In the new variables Eq. (2.65) can be rewritten in a dimensionless form.
Using the dimensionless form of Eq. (2.65) it is possible to deduce the connection formula for the
normal component of the velocity perturbations. The system of two linear equations outside the
dissipative layer and the connection formulae constitute the complete system of equations and
boundary conditions, which must be solved simultaneously with the dimensionless nonlinear
governing equation inside the isotropic dissipative layer.
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3
Nonlinear theory of resonant slow waves in
strongly anisotropic and dispersive plasmas

The present chapter is devoted to deriving the equation that governs the dynamics of nonlinear resonant
slow waves in highly anisotropic and dispersive plasmas. The solar corona is a typical example of a plasma
with strongly anisotropic transport processes. The main dissipative mechanisms in the solar corona acting
on slow magnetoacoustic waves are the anisotropic thermal conductivity and viscosity. Ballai et al. (1998b)
developed the nonlinear theory of driven slow resonant waves in such a regime. In the present chapter
the nonlinear behaviour of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas
with strongly anisotropic viscosity and thermal conductivity is expanded by considering dispersive effects
due to Hall currents. Our analysis shows that the nonlinear governing equation describing the dynamics of
nonlinear resonant slow waves is supplemented by a term which describes nonlinear dispersion and is of the
same order of magnitude as nonlinearity and dissipation. The connection formulae are found to be similar
to their non-dispersive counterparts. The results of the present chapter have been published in Physics of
Plasmas (Clack and Ballai, 2008).

Mathematicians stand on each other’s shoulders.
(Carl Friedrich Gauss 1777 − 1855)
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3.1 Introduction

Ionson (1978) suggested, for the first time, that resonant MHD waves may be a means to heat
magnetic loops in the solar corona. Since then, resonant absorption of MHD waves has become a
popular and successful mechanism for providing some of the heating of the solar corona (see, e.g.
Poedts et al., 1990b; Ofman and Davila, 1995; Belien et al., 1999). A driven problem for resonant
MHD waves occurs when there is an external (or internal) source of energy that excites the plasma
oscillations (see Sect. 2.3). If there is a small amount of dissipation present in the system, after
some time the system will attain a steady state in which all perturbed quantities will oscillate with
the same frequency ω. Two types of driving are possible. First, direct driving, was described in
Sect. 2.3. In the context of resonant absorption, this type of driving was studied by, e.g. Ruderman
et al. (1997a), Ruderman et al. (1997b) and Tirry et al. (1997). Secondly, in the case of indirect or
lateral driving, the energy source can be either outside or inside the system. This energy source
excites fast or slow magnetosonic waves which propagate across and along magnetic surfaces
and reach the resonant magnetic surface where their energy is partly dissipated due to resonant
coupling with localized Alfvén or slow waves. The lateral driving problem was studied by, e.g.
Davila (1987) for planar geometry and by, e.g. Erdélyi (1997) for cylindrical geometry. In the
present chapter, we consider only the lateral driven case (for a comprehensive background to
lateral driving see, e.g. Poedts et al., 1989, 1990a,c,d). An important property of these waves is
that their damping rate is independent of the values of the dissipative coefficients, a situation
characteristic for dissipative systems with large Reynolds numbers. As a result, the damping rate
of near resonant MHD waves can be many orders of magnitudes larger than the damping rate of
MHD waves with the same frequencies in homogeneous plasmas. The damping allows the waves
energy to be converted into heat, which has made resonant absorption a subject of intense study.

Most studies on driven resonant MHD waves use isotropic viscosity and / or electrical resis-
tivity. However, the solar corona is a well-known example of a plasma where viscosity is strongly
anisotropic (Hollweg, 1985). Hollweg and Yang (1988) studied the laterally driven problem in the
cold plasma approximation. They found that anisotropic viscosity does not remove the Alfvén
singularity (if the Braginskii’s viscosity tensor is approximated by its first term only). However,
it is shown in Sect. 2.4 that Braginskii’s full viscosity tensor does remove the Alfvén singularity
via its shear viscosity component.

For the case of slow resonant waves the situation is different. The laterally driven linear slow
resonant waves in plasmas with strongly anisotropic viscosity and thermal conductivity was stud-
ied first by Ruderman and Goossens (1996). They successfully showed that anisotropic viscosity
and / or thermal conductivity removes the singularity at the slow resonance present in ideal plas-
mas. They also obtained the explicit connection formulae, which are identical to those found in
the case of plasmas with isotropic viscosity and finite electrical resistivity (see, e.g. Sakurai et al.,
1991b). This fact supports the hypothesis that in weakly dissipative plasmas the connection for-
mulae are independent of the exact form of dissipative processes present in the dissipative layer.

The laterally driven nonlinear slow resonant waves in plasmas with strongly anisotropic vis-
cosity and thermal conductivity was first studied by Ballai et al. (1998b). They found that nonlin-
earity was crucial in the dissipative layer. The governing equation for slow wave dynamics in the
dissipative layer was derived and the implicit connection formulae were found (explicit connec-
tion formulae have only been found for linear theory and for the limit of strong nonlinearity, see,
e.g. Ruderman, 2000). The governing equation was almost identical to that found by Ruderman
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et al. (1997d), however the dissipative term was laterally dependent (θ) rather than normally de-
pendent (ξ). The implicit connection formulae found coincide with those found in plasmas with
isotropic viscosity and finite electrical resistivity (Ruderman et al., 1997d).

A drawback of previous studies on resonant absorption is that even though anisotropy is con-
sidered, dispersion (by, e.g. Hall effect) is neglected. This approximation is acceptable only for
lowest regions of the solar atmosphere. The solar corona is known to be strongly magnetized,
hence the Hall term can be comparable with other effects considered in the process of resonance.
The present chapter will extend the nonlinear theory of resonant slow MHD waves in the dissipa-
tive layer with strongly anisotropic viscosity and thermal conductivity to include Hall dispersion
and show that the effect of this new addition is of the same order of magnitude as nonlinearity
and dissipation near resonance.

3.2 Fundamental equations

In what follows we use the visco-thermal MHD equations with strongly anisotropic viscosity and
thermal conductivity. We assume that the plasma is strongly magnetised, so that the conditions
ωeτe ≫ 1 and ωiτi ≫ 1 are satisfied. Due to the strong magnetic field, transport processes are
anisotropic. Under these conditions, for slow waves, it is a good approximation to retain only
the first term of Braginskii’s expression for viscosity (Hollweg, 1985) given by Eq. (2.29) and the
definitions from Eqs (2.23) and (2.27). As discussed in Sect. 2.4, in a strongly magnetised plasma
the thermal conductivity parallel to the magnetic field lines dwarfs the perpendicular component
so the heat flux is supplied by Eq. (2.32).

In the solar corona the finite electrical resistivity can be neglected as it is several orders of mag-
nitude smaller than the dissipative coefficients considered here (see, e.g. Erdélyi and Goossens,
1995). The visco-thermal MHD equations are given by Eqs (2.1)–(2.8), with L = ∇ · q substituted
into Eq. (2.7). This substitution transforms the energy equation into the thermal equation

∂T

∂t
+ v ·∇T + (γ − 1)T∇ · v =

γ − 1

R̃ρ

{
∇ ·
[
κ∥b ′(b ′ ·∇T )

]
+

1

3
η0Q2

}
, (3.1)

where
Q = 3b ′ · (b ′ ·∇)v − ∇ · v.

The first term (in the braces) on the right hand side of Eq. (3.1) describes heating due to thermal
conductivity, while the second term gives the viscous heating. In addition to the thermal equation
being formed, the total pressure is modified by the viscosity, to give

P = p +
B2

2µ0
+

η0

3
Q. (3.2)

The propagation of compressional linear and nonlinear MHD waves in Hall plasmas has been
studied by, e.g. Baranov and Ruderman (1974); Ruderman (1976, 1987, 2002); Ballai et al. (2003);
Miteva et al. (2004). As stated in Sect. 2.4, Hall MHD is only relevant to plasma dynamics occur-
ring on length scales of the order of the ion inertial length (di = c/ωi). For the present chapter
this would require that di = O(δc), where δc is the thickness of the anisotropic slow dissipative
layer. Indeed, starting from the upper chromosphere this condition is satisfied and the lengths
involved in the problem are of the order of 10 − 100m.
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We adopt a Cartesian coordinate system, and limit our analysis to a static background equi-
librium (v0 = 0). We assume that all equilibrium quantities depend on x only. The equilibrium
magnetic field, B0, is unidirectional and lies in the yz−plane. The equilibrium quantities must
satisfy the condition of total pressure balance as given by Eq. (2.33). In addition we assume that
the wave propagation is independent of y (∂/∂y = 0). In linear theory of driven waves all per-
turbed quantities oscillate with the same frequency ω (see Sect. 2.5) so we seek solutions in the
form of propagating waves, where these waves depend on the combination θ = z − Vt, with
V = ω/k where k = (k2

x + k2
y + k2

z)1/2. In the context of resonant absorption (of slow waves)
the phase velocity (V) must match the projection of the cusp velocity (cT ) onto the z-axis when
x = xc. To define the resonant position mathematically it is convenient to introduce the angle (α)
between the z−axis and the direction of the equilibrium magnetic field, so that the components
of the equilibrium magnetic field are

B0y = B0 sin α, B0z = B0 cos α. (3.3)

The definition of the slow resonant position can now be written mathematically as

V = cT (xc) cos α. (3.4)

In a nonlinear regime the perturbations cannot be Fourier-analysed, however, in an attempt
to adhere as closely to linear theory as possible we look for travelling wave solutions and assume
all perturbed quantities depend on θ = z − Vt where V is given by Eq. (3.4). The perturbations of
the physical quantities are defined by

ρ = ρ0 + ρ, p = p0 + p, T = T0 + T B = B0 + b, H = H0 +H, P = P0 + P̃ (3.5)

Simple calculations using Eqs (2.5) and (3.5) yields thatH0 = 0. To make the mathematical analy-
sis more concise and to make the physics more transparent we define the components of velocity
and magnetic field that are parallel and perpendicular to the equilibrium magnetic field as in
Eq. (2.64). In Sect. 2.6 we discussed, at length, the Reynolds numbers and dissipative coefficient
stretching required in different scenarios. In this particular scenario, we need to use the Reynolds
numbers defined by Eq. (2.54), the nonlinearity parameter in Eq. (2.58) and the stretched dissi-
pative coefficients supplied by Eq. (2.62). In addition, we must also consider the coefficient of Hall
conduction, defined as χ = ηωeτe (although η is small enough, in the solar corona, to be neglected
in comparison to η0, here it is multiplied by the product ωeτe which is very large under coronal
conditions). Similar to the previous dissipative coefficients, we introduce the scaling

χ = ϵ1/2χ. (3.6)

With all these new notations we rewrite the MHD equations as

V
∂ρ

∂θ
−

∂(ρ0u)

∂x
− ρ0

∂w

∂θ
=

∂(ρu)

∂x
+

∂(ρw)

∂θ
, (3.7)
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, (3.10)

Vbx + B0u cos α = wbx − ubz − ϵ1/2χ
∂b∥

∂θ
cos α sin α, (3.11)
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γT0p

c2
S

− T0ρ − ρ0T = ρT, (3.14)

∂bx

∂x
+
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= 0, (3.15)
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P̃ = p +
1

2µ0

(
b2

x + b2
⊥ + b2

∥ + 2B0b∥

)
+

1

3
ϵ1/2η0Q, (3.17)
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−
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)
. (3.18)

We should state that in Eqs (3.11)–(3.13) we have used the coefficient of Hall conduction (χ) which
does not contribute to the total Reynolds number because it is the multiplier of dispersive terms
rather than dissipative ones. The derivation of the expressions of the Hall terms in the induc-
tion equation can be found in Appendix A. The largest terms of Braginskii’s viscosity tensor are
derived in Appendix B. These terms are used in deriving the governing equation in the next
section.

The set of Eqs (3.7)–(3.18), will be used in the next section to derive the governing equation for
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wave motion in the anisotropic slow dissipative layer.

3.3 Deriving the governing equation in the dissipative layer

In order to derive the governing equation inside the anisotropic slow dissipative layer we employ
the method of simplified matched asymptotic expansions introduced in Sect. 2.7. We only con-
sider a weakly dissipative plasmas so viscosity and thermal conductivity are only important in
the narrow dissipative layer (here dissipation and nonlinearity are of the same order) embracing
the resonant position. Far away from the dissipative layer the amplitudes of perturbations are
small, so we use linear ideal MHD equations in order to describe the wave motion far away from
the dissipative layer. The full set of nonlinear dissipative MHD equations are used for describ-
ing wave motion inside the dissipative layer where the amplitudes are much larger than those far
away from the dissipative layer. We therefore look for solutions in the form of asymptotic expan-
sions. The equilibrium quantities change only slightly across the dissipative layer so it is possible
to approximate them by the first non-vanishing term in their Taylor series expansion with respect
to x. Similar to linear theory, we assume the expansions of equilibrium quantities are valid in a
region embracing the ideal resonant position which is assumed to be wider than the dissipative
layer.

Before deriving the nonlinear governing equation we ought to make a note. In linear theory,
perturbations of physical quantities are harmonic functions of θ and their mean values vanish
over a period. In nonlinear theory, however, the perturbations of variables can have non-zero val-
ues as a result of nonlinear interaction of different harmonics. Due to the nonlinear absorption of
wave momentum, a mean shear flow can be generated outside the dissipative layer, as shown by
Ruderman et al. (1997d) for slow waves in an isotropic plasma. In our scenario a mean shear flow
is created outside the dissipative layer, but as there is no perpendicular component to viscosity
the oscillating plasma can slide past each other without friction which produces a mean flow with
infinite amplitude. However, boundaries can prevent such oscillations. Therefore, if it is assumed
such boundaries exist there will be no generation of mean shear flow; a procedure carried out by
Ballai et al. (1998b) when they studied slow waves in anisotropic non-dispersive plasmas. Since
Hall currents do not halt the production of mean shear flows we will do the same.

The first step in our mathematical description is the derivation of governing equations outside
the dissipative layer where the dynamics is described by ideal and linear MHD. It is clear that
Eqs (3.7)–(3.18) contain terms proportional to ϵ1/2, therefore, the solution in the outer region is
represented by asymptotic expansions of the form

f = ϵf(1) + ϵ3/2f(2) + . . . , (3.19)

where f denotes any perturbed quantity (with the exception of the y− and z−components of the
velocity). Substitution of expansion (3.19) into the ideal (η0 = κ∥ = χ = 0) version of the system
of Eqs (3.7)–(3.18) leads to several orders of approximation. In the first order approximation a
system of linear equations with the superscript ‘1’ is obtained, where all but two of the variables
can be eliminated by algebraic means. This leads to a system of two equations for u(1) and P(1)

∂u(1)

∂x
=

V

F̃

∂P(1)

∂θ
,

∂P(1)

∂x
=

ρ0A

V

∂u(1)

∂θ
, (3.20)
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where the coefficients are given as

F̃ =
ρ0AC

V4 − V2(v2
A + c2

S) + v2
Ac2

S cos2 α
, (3.21)

A = V2 − v2
A cos2 α, C = (v2

A + c2
S)
(
V2 − c2

T cos2 α
)
. (3.22)

It is clear that the quantities A and C vanish at the Alfvén and slow resonant positions, respec-
tively. Thus, these two positions are regular singular points of the system (3.20). The remaining
variables can be expressed in terms of u(1) and P(1),

v
(1)
⊥ = −

V sin α

ρ0A
P(1), v

(1)
∥ =

Vc2
S cos α

ρ0C
P(1), (3.23)

b(1)
x = −

B0 cos α

V
u(1), b

(1)
⊥ =

B0 cos α sin α

ρ0A
P(1), (3.24)
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)
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V
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dx
, (3.25)
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dB0

dx
,

∂ρ(1)

∂θ
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C

∂P(1)
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u(1)

V
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dx
, (3.26)

∂T (1)

∂θ
=

(γ − 1)T0V2

ρ0C

∂P(1)

∂θ
+

u(1)

γVR̃

dc2
S

dx
. (3.27)

Note that Eq. (3.20) coincides with the previously presented Eq. (2.34). The above equations are
similar to those found in a non-dispersive plasma (Ballai et al., 1998b), because the dissipative
and dispersive terms do not appear in the linear limit.

Eliminating P(1) from system (3.20) and then the introducing the Fourier series for the periodic
functions leads to

∂

∂x

(
F̃
∂û(1)

∂x

)
+ k2ρ0Aû(1) = 0. (3.28)

Here û(1)(x, k) is a coefficient function in the Fourier series for u(1)(x, z) with respect to z, and
k = 2πn/L where n is the index of the terms in the Fourier series. The position x = 01 is a regular
singular point, so the solution of (3.28) can be found in the form of Fröbenius expansion in the
variable x with the form

û(1) = Ar(k)Ur(x, k) + As(k)Us(x, k). (3.29)

Ar(k) and As(k) are arbitrary functions of k. The regular (Ur) and singular solutions (Us) are
defined by

Ur = 1 + Ur1x + Ur2x2 + . . . ,

Us = Ur ln |x| + Us1x + Us2x2 + . . . . (3.30)

The expressions for the coefficients described above are not shown here as they are not used in
what follows. Note that the coefficients in Eqs (3.29)–(3.30) are generally different for x < 0 and
x > 0.

It can be shown (for full details see, e.g. Ruderman et al., 1997d; Ballai et al., 1998b; Clack and
Ballai, 2008) that in the vicinity of the slow resonance the variables P(1), v

(1)
⊥ and b

(1)
⊥ behave as a

1We will always be able to translate the coordinate system such that the resonant position is at x = 0.



3.3. DERIVING THE GOVERNING EQUATION IN THE DISSIPATIVE LAYER 51

series of the form
f(1) = f

(1)
1 (θ) + f

(1)
2 (θ)x ln |x| + f

(1)
3 (θ)x + . . . , (3.31)

the variables u(1) and b
(1)
x have series solutions of the form

g(1) = g
(1)
1 (θ) ln |x| + g

(1)
2 (θ) + g

(1)
3 (θ)x ln |x| + g

(1)
4 (θ)x + . . . , (3.32)

and the variables ρ(1), p(1), T (1) v
(1)
∥ and b

(1)
∥ can be written as

h(1) = h
(1)
1 (θ)x−1 + h

(1)
2 (θ) ln |x| + h

(1)
3 (θ) + . . . . (3.33)

Equations (3.31)–(3.33) repeat the well-known results of linear theory that in the vicinity of the
slow resonant position the variables P(1), v

(1)
⊥ and b

(1)
⊥ are regular, u(1) and b

(1)
x possess a log-

arithmic singularity, and ρ(1), p(1), T (1), v
(1)
∥ and b

(1)
∥ possess a 1/x singularity. In particular,

the last five variables are the most singular. Proceeding in the same way, the solutions of subse-
quent higher order approximations can be found and the dominant singular behaviour persists
to higher approximations. With all the information gathered the outer expansions can be written
out in the form

f = ϵ
[
f
(1)
1 (θ) + f

(1)
2 (θ)x ln |x| + f

(1)
3 (θ)x + . . .

]

+ ϵ
[
f
(2)
1 (θ) ln |x| + f

(2)
2 (θ) + . . .

]
+

∞∑

n=3

ϵ(n+1)/2
[
f
(n)
1 x2−n + . . .

]
, (3.34)

for P, ṽ⊥ and b⊥,

g = ϵ
[
g

(1)
1 (θ) ln |x| + g

(1)
2 (θ) + g

(1)
3 (θ)x ln |x| + g

(1)
4 (θ)x + . . .

]

+ ϵ3/2
[
g

(2)
1 (θ) ln2 |x| + g

(2)
2 (θ) ln |x| + g

(2)
3 (θ) + . . .

]

+
∞∑

n=3

ϵ(n+1)/2
[
g

(n)
1 (θ)x1−n + g

(n)
2 (θ)x2−n ln |x| + g

(n)
3 (θ)x2−n + . . .

]
, (3.35)

for u and bx and

h = ϵ
[
h

(1)
1 (θ)x−1 + h

(1)
2 (θ) ln |x| + h

(1)
3 (θ) + . . .

]
+ ϵ3/2

[
h

(2)
1 (θ)x−1 ln |x| + h

(2)
2 (θ)x−1 + . . .

]

+
∞∑

n=3

ϵ(n+1)/2
[
h

(n)
1 (θ)x−n + h

(n)
2 (θ)x1−n ln |x| + h

(n)
3 (θ)x1−n + . . .

]
, (3.36)

for ρ, p, T , ṽ∥ and b∥. The dots inside the braces denote terms that are of higher order with respect
to x. In general, the coefficient functions of θ in Eqs (3.34)–(3.36) are different for x < 0 and x > 0.

Now let us concentrate on the solution in the dissipative layer. The thickness of the anisotropic
slow dissipative layer is of the order linhR−1. We have assumed that R ∼ ϵ−1/2 so we obtain
linhR−1 = O(ϵ1/2linh). The implication of this scaling is that we have to introduce a new stretched
variable to replace the transversal coordinate in the dissipative layer, so we are going to use ξ =

ϵ−1/2x. Equations (3.7)–(3.18) are not rewritten here as they are easily obtained by the substitution
of

∂

∂x
= ϵ−1/2 ∂

∂ξ
, (3.37)
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for all derivatives. The equilibrium quantities still depend on x, not ξ (their expression is valid in a
wider region than the characteristic scale of dissipation). All equilibrium quantities are expanded
around the ideal resonant position (x = xc) as

f0 = f0c + ξ

(
∂f0

∂ξ

)

c

+ . . . ≈ f0c + ϵ1/2ξ

(
df0

dx

)

c

, (3.38)

where f0 is any equilibrium quantity and the subscript ’c’ indicates the equilibrium quantity has
been evaluated at the resonant point (we can always make xc = 0 by proper translation of the
coordinate system).

We seek the solution to the set of equations obtained from Eqs (3.7)–(3.18) by the substitution
of x = ϵ1/2ξ into variables in the form of power series of ϵ. These equations contain powers
of ϵ1/2, so we use this quantity as an expansion parameter. To derive the form of the inner
expansions of different quantities we have to analyze the outer solutions. First, since v⊥ and b⊥

are regular at x = xc we can write their inner expansions in the form of their outer expansions,
namely Eq. (3.19). The quantity P̃ is the sum of the perturbation of total pressure P, which is
regular at x = xc, and the dissipative term proportional to Q. From Eq. (3.18) it is obvious that
Q behaves as x−1 in the vicinity of x = xc. Far away from the dissipative layer, Q is of the order
ϵ. Since the thickness of the anisotropic slow dissipative layer is of the order ϵ1/2linh, Q is of the
order ϵ1/2 in the dissipative layer. However, Eq. (3.17) clearly shows the term proportional to Q

contains a multiplier (ϵ1/2) which implies the contribution of P̃ supplied by the dissipative term
is of the order ϵ. As a consequence, we write the inner expansion of P̃ in the form of its outer
expansion [Eq. (3.19)]. The amplitudes of large variables in the dissipative layer are of the order
ϵ1/2, so the inner expansion of the variables v∥, b∥, p, ρ and T is

g = ϵ1/2g(1) + ϵg(2) + . . . . (3.39)

The quantities u and bx behave as ln |x| in the vicinity of x = xc, which suggests that they have ex-
pansions with terms of the order of ϵ ln ϵ in the dissipative layer. Ruderman et al. (1997d) showed
that, strictly speaking, the inner expansions of all variables have to contain terms proportional to
ϵ ln ϵ and ϵ3/2 ln ϵ. However, in the simplified version of matched asymptotic expansions, we
consider ln ϵ as a quantity of the order of unity. This enables us to write the inner expansions for
u and bx in the form of Eq. (3.19).

We now substitute the expansion (3.19) for u, bx, P̃, v⊥, b⊥ and the expansion given by (3.39)
for v∥, b∥, p, ρ, T into the set of equations obtained from Eqs (3.7)–(3.18) after substitution of
x = ϵ1/2ξ. The first order approximation (terms proportional to ϵ), yields a linear homogeneous
system of equations for the terms with superscript ’1’. The important result that follows from this
set of equations is that

P̃(1) = P̃(1)(θ), (3.40)

that is to say P̃(1) does not change across the anisotropic slow dissipative layer. This result par-
allels the result found in linear theory (see, e.g. Sakurai et al., 1991b; Goossens et al., 1995) and
nonlinear theory (see, e.g. Ruderman et al., 1997d; Ballai et al., 1998b). Subsequently, all remaining
variables can be expressed in terms of u(1), v

(1)
∥ and P̃(1) as

v
(1)
⊥ =

c2
Sc

sin α

ρ0cVv2
Ac

P̃(1)(θ), b(1)
x = −

B0c cos α

V
u(1), (3.41)
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b
(1)
⊥ = −

B0cc2
Sc

sin α cos α

ρ0cV2v2
Ac

P̃(1)(θ), b
(1)
∥ = −

B0cV

v2
Ac

cos α
v

(1)
∥ , (3.42)

p(1) =
ρ0cV

cos α
v

(1)
∥ , ρ(1) =

ρ0cV

c2
Sc

cos α
v

(1)
∥ , T (1) =

(γ − 1)T0cV

c2
Sc

cos α
v

(1)
∥ . (3.43)

In addition, we find that the equation that relates u(1) and v
(1)
∥ is

∂u(1)

∂ξ
+

V2

v2
Ac

cos α

∂v
(1)
∥

∂θ
= 0. (3.44)

We can verify whether Eqs (3.41)–(3.44) are correct, by substituting V = cTc cos α into Eqs (3.23)–
(3.27). If the equations are identical then we have carried out our calculations properly. The
reason for this is that dissipation and dispersion do not appear in the first order approximation,
so we should recover the result from linear theory.

In the second order approximation we use only the expressions obtained from Eqs (3.7), (3.10),
(3.13), (3.14), (3.16) and (3.17). Employing Eqs (3.40)–(3.44), we replace the variables in the first
order approximation. The equations obtained in the second order approximation are

ρ0c

⎛

⎝∂u(2)

∂ξ
+

∂v
(2)
∥

∂θ
cos α

⎞

⎠− V
∂ρ(2)

∂θ
= −u(1)

(
dρ0

dx

)

c

−
v2

Ac
cos α

v2
Ac

+ c2
Sc

(
dρ0

dx

)

c

ξ
∂v

(1)
∥

∂θ

+
c2

Sc
sin2 α

Vv2
Ac

dP̃

dθ
−

ρ0cV

c2
Sc

⎛

⎝ u(1)

cos α

∂v
(1)
∥

∂ξ
+

2v2
Ac

+ c2
Sc

c2
Sc

+ v2
Ac

v
(1)
∥

∂v
(1)
∥

∂θ

⎞

⎠ , (3.45)

∂

∂θ

(
Vv

(2)
∥ +

B0c cos α

µ0ρ0c

b
(2)
∥

)
=

cos α

ρ0c

dP̃(1)

dθ
+

B0c cos α

µ0Vρ0c

u(1)

(
dB0

dx

)

c

+
V

B0c

[(
dB0

dx

)

c

−
B0c

ρ0c

(
dρ0

dx

)

c

]
ξ

∂v
(1)
∥

∂θ
−

(
η0 cos2 α

ρ0c

)
2v2

Ac
+ 3c2

Sc

v2
Ac

+ c2
Sc

∂2v
(1)
∥

∂θ2
, (3.46)

V
∂b

(2)
∥

∂θ
− B0c

∂u(2)

∂ξ
= u(1)

(
dB0

dx

)

c

−
V2

v2
Ac

cos α

(
dB0

dx

)

c

ξ
∂v

(1)
∥

∂θ
−

B0cc2
Sc

sin2 α

ρ0cVv2
Ac

dP̃(1)

dθ

+
B0cv2

Ac

V
(
v2

Ac
+ c2

Sc

)

⎛

⎝u(1)
∂v

(1)
∥

∂ξ
cos α −

V2

v2
Ac

v
(1)
∥

∂v
(1)
∥

∂θ

⎞

⎠+ χ
B0c sin α

v2
Ac

+ c2
Sc

∂v
(1)
∥

∂ξ

∂v
(1)
∥

∂θ
, (3.47)

V
∂T (2)

∂θ
− (γ − 1)T0c

⎛

⎝∂u(2)

∂ξ
+

∂v
(2)
∥

∂θ
cos α

⎞

⎠ = u(1)

(
dT0

dx

)

c

+ (γ − 1)

⎡

⎣ v2
Ac

cos α

T0c

(
v2

Ac
+ c2

Sc

)ξ
(

dT0

dx

)

c

∂v
(1)
∥

∂θ
−

c2
Sc

sin2 α

ρ0cVv2
Ac

dP̃

dθ
−

(γ − 1)Vκ∥ cos α

ρ0c R̃c2
Sc

∂2v∥

∂θ2

+
V

c2
Sc

⎛

⎝ u(1)

cos α

∂v
(1)
∥

∂ξ
+

γv2
Ac

+ c2
Sc

v2
Ac

+ c2
Sc

v
(1)
∥

∂v
(1)
∥

∂θ

⎞

⎠

⎤

⎦ , (3.48)
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γT0c

c2
Sc

p(2) − T0cρ(2) − ρ0cT (2) =
ρ0cV

c2
Sc

cos α

[(
dT0

dx

)

c

+
(γ − 1)T0c

ρ0c

(
dρ0

dx

)]
ξv

(1)
∥

+
(γ − 1)T0cρ0cv2

Ac

c2
Sc

(
v2

Ac
+ c2

Sc

)
(
v

(1)
∥

)2
, (3.49)

p(2) +
B0c

µ
B

(2)
∥ =

ρ0cV

B0c cos α

(
dB0

dx

)

c

ξv
(1)
∥ −

(η0 cos α

3

) 3c2
Sc

+ 2v2
Ac

v2
Ac

+ c2
Sc

∂v
(1)
∥

∂θ

−
ρ0cc2

Sc

2
(
v2

Ac
+ c2

Sc

)
(
v

(1)
∥

)2
. (3.50)

In deriving the above system we have used the fact that

Q(1) =
3c2

Sc
+ 2v2

Ac

v2
Ac

+ c2
Sc

∂v
(1)
∥

∂θ
cos α, (3.51)

obtained from Eq. (3.18) in the first order of approximation. With the exception of Eq. (3.47),
which has the addition of the Hall term, these equations are identical to those found by Ballai
et al. (1998b). The left-hand sides of the set of Eqs (3.45)–(3.51) could be obtained from the left-
hand sides of the first order approximation by substituting variables with the superscript ‘2’ for
those with superscript ‘1’. The first order of approximation possesses a non-trivial solution, so
Eqs (3.45)–(3.51) are compatible only if the right-hand sides of Eqs (3.45)–(3.51) satisfy a com-
patibility condition. To derive the compatibility condition we express ρ(2) and b

(2)
∥ in terms of

u(2), v
(2)
∥ , u(1), v

(1)
∥ and P̃(1), using Eqs (3.46) and (3.48)–(3.50). Subsequently, we substitute these

expressions into Eqs (3.45) and (3.47), to obtain

∂u(2)

∂ξ
+

V2

v2
Ac

cos α

∂v
(2)
∥

∂θ
=

V
(
v2

Ac
+ c2

Sc
sin2 α

)

ρ0cv4
Ac

cos2 α

dP̃(1)

dθ
+

V

v2
Ac

+ c2
Sc

v
(1)
∥

∂v
(1)
∥

∂θ

+
V2

v2
Ac

cos α

[
2

B0c

(
dB0

dx

)

c

−
1

ρ0c

(
dρ0

dx

)

c

]
ξ

∂v
(1)
∥

∂θ
−

η0V cos α

ρ0cv2
Ac

(
2v2

Ac
+ 3c2

Sc

v2
Ac

+ c2
Sc

)
∂2v

(1)
∥

∂θ2

−
V

c2
Sc

cos α
u(1)

∂v
(1)
∥

∂ξ
−

χ sin α

v2
Ac

+ c2
Sc

∂v
(1)
∥

∂ξ

∂v
(1)
∥

∂θ
, (3.52)

∂u(2)

∂ξ
+

V2

v2
Ac

cos α

∂v
(2)
∥

∂θ
=

c2
Sc

sin2 α

ρ0cVv2
Ac

dP̃(1)

dθ
−

V2

T0cc2
Sc

cos α

(
dT0

dx

)

c

ξ
∂v

(1)
∥

∂θ
−

V

c2
Sc

cos α
u(1) ∂v∥

∂ξ

−
V
(
2c2

Sc
+ (γ + 1)v2

Ac

)

c2
Sc

(
v2

Ac
+ c2

Sc

) v
(1)
∥

∂v
(1)
∥

∂θ
+

V cos α

γρ0cc2
Sc

[
2γη0

3

(
2v2

Ac
+ 3c2

Sc

v2
Ac

+ c2
Sc

)
+

(γ − 1)2κ∥

R̃

]
∂2v

(1)
∥

∂θ2
.

(3.53)

It can be seen that Eqs (3.52) and (3.53) have identical left-hand sides. Extracting these two
equations we derive the governing equation (which is the equation connecting v

(1)
∥ and P̃(1))

∆ξ
∂v

(1)
∥

∂θ
− av

(1)
∥

∂v
(1)
∥

∂θ
+

V3λ

v2
Ac

+ c2
Sc

∂2v
(1)
∥

∂θ2
+ Ω

∂v
(1)
∥

∂ξ

∂v
(1)
∥

∂θ
=

Vc2
Sc

cos α

ρ0c

(
v2

Ac
+ c2

Sc

) dP̃(1)

dθ
, (3.54)
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where we have used the notation

a =
V
[
(γ + 1)v2

Ac
+ 3c2

Sc

]
v2

Ac
cos α

(
v2

Ac
+ c2

Sc

)2 , λ =
η0

(
2v2

Ac
+ 3c2

Sc

)2

3ρ0cv2
Ac

c2
Sc

+
(γ − 1)2κ∥

(
v2

Ac
+ c2

Sc

)

γρ0c R̃c2
Sc

,

Ω =
χc2

Sc
v2

Ac(
v2

Ac
+ c2

Sc

)2 cos α sin α, ∆ = − cos2 α

(
dc2

T

dx

)

c

.

Equation (3.54) differs from its counterpart found by Ballai et al. (1998b) only by the last term
of the left-hand side representing Hall dispersion. If we linearize Eq. (3.54) and take v

(1)
∥ pro-

portional to exp(ikθ), we arrive at the linear equation for the parallel velocity obtained in linear
theory by Ruderman and Goossens (1996).

Equation (3.54) is the complete nonlinear governing equation for the parallel velocity in the
anisotropic slow dissipative layer. The function P̃(1) in this equation is determined by the solution
outside the dissipative layer and is thought to be the driving term. We should note here that the
dispersion (the last term on the left-hand side) appears as a nonlinear term (nonlinear dispersion).

3.4 Nonlinear connection formulae

In linear dissipative MHD it is assumed that when dissipative effects are weak they are only
important in the thin dissipative layer that embraces the ideal resonant position (see, e.g. Sakurai
et al., 1991b; Hollweg, 1988; Hollweg and Yang, 1988; Goossens et al., 1995). Outside this layer,
ideal MHD can be employed to describe the plasma motion. The dissipative layer is treated as
a surface of discontinuity (see discussion in Sect. 2.5). In order to solve Eq. (3.20) boundary
conditions are needed for the variables u and P at this surface of discontinuity. In linear theory
these conditions are described by the explicit connection formulae that determine the jumps in the
quantities u and P. In order to derive the nonlinear counterpart of connection formulae for the
anisotropic slow dissipative layer, we define the jump of a function as in Eq. (2.66). The thickness
of the anisotropic slow dissipative layer (δc) is determined by the condition that the first and third
terms in Eq. (3.54) are of the same order, i.e.

δc =
V3kλ(

v2
Ac

+ c2
Sc

)
|∆|

, (3.55)

where k is the wave number. It is instructive to introduce a new, dimensionless variable [σc =

(x−xc)/δc] in the dissipative layer. Let x0 be the characteristic width of the overlap regions of the
dissipative layer (where both the linear ideal MHD equations and the nonlinear dissipative MHD
equations are valid). One of the main reasons we have introduced the variable σc is the property
that σc = O(1) in the dissipative layer, while |x| → x0 corresponds to |σc| → ∞. This provides us
with the second definition of the jump in the function f(x) across the dissipative layer,

[f] = lim
σc→+∞

{f(σc) − f(−σc)} . (3.56)

The first connection formula can be obtained in a straightforward way by taking into account that
the variable P̃(1) does not change across the dissipative layer, so there cannot be any jump in the
total pressure,

[
P
]

= 0. (3.57)
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This connection formula is the same as obtained previously by linear and nonlinear theories.

In order to derive the second connection formula we use the approximate relations u ≈ ϵu(1),
v∥ ≈ ϵ1/2v

(1)
∥ , P̃ ≈ ϵP̃(1) and introduce the new dimensionless variable, qc, defined as

qc = ϵ1/2 kVδc cos α

v2
Ac

ṽ
(1)
∥ . (3.58)

In the new variable, Eq. (3.44) is rewritten as

∂u

∂σc
= −

V

k cos2 α

∂q

∂θ
, (3.59)

and Eq. (3.54) becomes

sgn(∆c)σc
∂qc

∂θ
− Λqc

∂qc

∂θ
+ k−1 ∂2qc

∂θ2
+ Ψ

∂qc

∂σc

∂qc

∂θ
=

kV4

ρ0cv2
Ac

|∆c|

dP̃

dθ
, (3.60)

where

Λ = R2
c

v4
Ac

|∆c|
[
(γ + 1)v2

Ac
+ 3c2

Sc

]

kV8
, and Ψ = R2

c

χ|∆c|2c2
Sc

v2
Ac

(v2
Ac

+ c2
Sc

) sin α

kV13
. (3.61)

It is worth mentioning that we have used a slightly different Reynolds number (Rc) to the one
used in previous sections of this chapter. Here it is defined as R∗

c = V/kλ. When klinh = O(1) (in
fact our analysis is valid when ϵ1/2 ≪ klinh ≪ ϵ−1/2), the total Reynolds number used in this
section is of the same order of magnitude as that used in the previous sections of this chapter, and
the criterion of nonlinearity coincides with that obtained in Sect. 2.6 from the qualitative analysis.
It is easy to show that the estimations

qc = O(ϵ1/2klinhR−1
c ), δc = O(linhR−1

c ), Λ = O(R2
ck−1l−1

inh), Ψ = O(R2
ck−1l−2

inh),

are valid. The ratios of the nonlinear to dissipative term (Nc), dispersive to dissipative term (Dd)
and dispersive to nonlinear term (Dn) in Eq. (3.60) are

Nc = O(ϵ1/2Rcklinh), Dd = O(ϵ1/2R2
ckl−1

inh), Dn = O(Rcl
−2
inh).

The parameters Nc and Dd can be considered as nonlinearity and dispersive parameters, respec-
tively. Nonlinearity (dispersion) is important if Nc ! 1 (Dd ! 1). When Nc ≪ 1 (Dd ≪ 1) the
nonlinear (dispersive) term in Eq. (3.60) can be neglected. Dispersion dominates nonlinearity if
Dn > 1. In the opposite case (Dn < 1) nonlinearity dominates dispersion. With the above scal-
ings in mind, it is obvious that the physical background of this chapter is applicable for relatively
short inhomogeneity scales.

Following linear studies, the outer solution reveals that v∥ = O(x−1) as x → 0. Thus, to
match the outer and inner solutions in the overlap regions the asymptotic relation qc = O(σ−1

c )

as |σc| → ∞ must be valid. It then directly follows from Eq. (3.60) that qc takes the form

qc ≃ kV4Pc(θ)

ρ0cv2
Ac

∆cσc
. (3.62)
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for |σc| → ∞. From Eqs (3.59) and (3.62) it is obtained that when σc → ±∞,

u = −
Vc4

Sc
cos2 α

ρ0c∆c

(
v2

Ac
+ c2

Sc

)2
dPc

dθ
ln |σc| + u±(θ) + O(σ−1

c ), (3.63)

where
u+(θ) − u−(θ) = −

V

k cos2 α
P

∫∞

−∞

∂qc

∂θ
dσc. (3.64)

The symbol of Cauchy principal part (P) is used because the integral is divergent at infinity. The
matching conditions yield

[uc] = −
V

k cos2 α
P

∫∞

−∞

∂qc

∂θ
dσc. (3.65)

Equation (3.65) is the nonlinear analog for the implicit connection formula for the normal
component of velocity. The main difference between the linear and the nonlinear connection
formula is that while in the linear version the jumps are expressed explicitly in terms of P̃(θ) and
equilibrium quantities, in the nonlinear version the jump in the normal component of velocity,
u, is expressed implicitly in terms of an unknown quantity qc. The connection formula (3.65)
is identical to that found by Ruderman et al. (1997d) in the limit of weak nonlinearity for non-
dispersive plasmas and by Ballai et al. (1998b) for anisotropic plasmas. To find solutions in the
dissipative layer we have to use Eqs (3.20) and (3.60) simultaneously. The boundary conditions
for the outer solution are provided by Eqs (3.57) and (3.65).

3.5 Conclusions
In the present chapter we have further developed the nonlinear theory of resonant slow MHD
waves in the dissipative layer in one-dimensional planar geometry in plasmas with strongly
anisotropic viscosity and thermal conductivity by considering dispersive effects. The plasma mo-
tion outside the dissipative layer is described by the set of linear, ideal MHD equations. This set
of equations can be reduced to Eq. (3.20) for the component of the velocity in the direction of the
inhomogeneity (u) and the perturbation of total pressure (P). The wave motion in the anisotropic
slow dissipative layer is governed by Eq. (3.60) for the quantity qc, which is the dimensionless
component of the velocity parallel to the equilibrium magnetic field defined by Eq. (3.58).

The dissipative layer is considered as a surface of discontinuity when solving Eq. (3.20) to
describe the wave motion outside the dissipative layer. The jumps across the dissipative layer
are given by Eqs. (3.57) and (3.65), thus providing the boundary conditions at the surface of
discontinuity. In stark contrast to linear theory, the jump in u is not solvable analytically, as it
is given in terms of a infinite integral of qc; which in turn is determined by Eq. (3.60). Since
this equation has not been solved analytically we must solve Eqs (3.20) and (3.60) simultaneously
when studying resonant slow waves that are nonlinear in the anisotropic dissipative layer.

From the fact that qc forms part of the jump, it is clear that dispersion must play a role in the
wave absorption at the slow resonance. Since qc is found by solving Eq. (3.60) and as it contains
a dispersive term, the overall form of qc is changed. This effect is likely to be small as it is the
same order of magnitude as nonlinearity, which has been shown to have a decreasing effect on
absorption (see, e.g. Ruderman et al., 1997c; Ballai et al., 1998a). We will tackle this very problem
later in Chapter 6 of the present thesis.
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4
The validity of nonlinear resonant Alfvén

waves in space plasmas

In the approximation of linear dissipative MHD it can be shown that driven MHD waves in magnetic
plasmas with high Reynolds number exhibit a near resonant behaviour if the frequency of the wave be-
comes equal to the local Alfvén (or slow) frequency of a magnetic surface. This near resonant behaviour is
confined to a thin region, known as the dissipative layer, which embraces the resonant magnetic surface.
Although driven MHD waves have small dimensionless amplitude far away from the resonant surface, this
near-resonant behaviour in the dissipative layer may cause a breakdown of linear theory. In the present
chapter, we aim to study the nonlinear effects in Alfvén dissipative layer. The method of simplified matched
asymptotic expansions developed for nonlinear slow resonant waves is used to describe nonlinear effects
inside the Alfvén dissipative layer. The nonlinear corrections to resonant waves in the Alfvén dissipative
layer are derived and it is proved that at the Alfvén resonance (with isotropic / anisotropic dissipation) wave
dynamics can be described by the linear theory with great accuracy. The results of the present chapter were
published in Astronomy and Astrophysics (Clack et al., 2009b).

I have always believed that astrophysics should be the extrapolation of laboratory physics, that we must
begin from the present universe and work our way backward to progressively more remote and uncertain

epochs.
(Hannes Alfvén 1908 − 1995)
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4.1 Introduction

One particular aspect of the solar physics that has attracted much attention since the 1940s is the
very high temperature of the solar corona compared with the much cooler lower regions of the
solar atmosphere requiring the existence of some mechanism(s) which keeps the solar corona hot
against the radiative cooling. One of the possible theories proposed is the transfer of omnipresent
waves’ energy into thermal energy by resonant absorption or resonant coupling of waves (see,
e.g. Poedts et al., 1990a; Sakurai et al., 1991b; Goossens et al., 1995). Waves which were initially
observed sporadically mainly in radio wavelengths (see, e.g. Kai and Takayanagi, 1973; Aschwan-
den et al., 1992) are now observed in abundance in all wavelengths, especially in (extreme) ultra-
violet (see, e.g. DeForest and Gurman, 1998; Aschwanden et al., 1999a; Nakariakov et al., 1999;
Robbrecht et al., 2001; King et al., 2003; Erdélyi and Taroyan, 2008; Mariska et al., 2008). Since
the plasma is non-ideal, waves can lose their energy through transport processes, however, the
time over which the waves dissipate their energy is far too long. In order to have an effective
and localized energy conversion, the plasma must exhibit transversal inhomogeneities relative to
the direction of the ambient magnetic field. According to the accepted wave theories, effective
energy transfer between an energy carrying wave and the plasma occurs if the frequency of the
wave matches one of the frequencies in the slow or Alfvén continua, i.e. at the slow or Alfvén
resonances.

Given the complexity of the mathematical approach, most theories describing resonant waves
are limited to the linear regime (see Sect. 2.5). Perturbations, in these theories, are considered
to be just small deviations from an equilibrium despite the highly nonlinear character of MHD
equations describing the dynamics of waves and the complicated interaction between waves and
plasmas. Initial numerical investigations of resonant waves in a nonlinear limit (see, e.g. Ofman
and Davila, 1995) unveiled that the account of nonlinearity introduces new physical effects which
cannot be described in the linear framework. The first attempts to describe the nonlinear resonant
waves analytically appeared after the papers by Ruderman et al. (1997c,d) which were followed
by further analysis by, e.g. Ballai et al. (1998b); Ruderman (2000); Clack and Ballai (2008), however,
all these investigations focused on the resonant slow waves only. These studies revealed that
nonlinearity does affect the absorption of waves.

The present chapter analytically studies the validity of nonlinear resonant Alfvén wave. We
will obtain governing equations using techniques made familiar in Chapter 3. Dissipation is a key
ingredient of the problem of resonance. As mentioned in Sect. 2.5 and 2.7, dissipation removes
singularities in mathematical solutions. From a physical point of view, dissipation is important
as it is the mechanism which relaxes the accumulation of energy at the resonant surface and
eventually contributes to the global process of heating.

4.2 Fundamental equations and assumptions

For describing mathematically the nonlinear resonant Alfvén waves we use the visco-resistive
MHD equations. In spite of the presence of dissipation we use the adiabatic equation as an ap-
proximation of the energy equation. Numerical studies by Poedts et al. (1994) in linear MHD have
shown that dissipation due to viscosity and finite electrical conductivity in the energy equation
does not alter significantly the behaviour of resonant MHD waves in the driven problem.

We discussed in Sect. 2.4 that when the product of the ion (electron) gyrofrequency [ωi(e)] and
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the ion (electron) collision time [τi(e)] is much greater than one the viscosity and finite electrical
conductivity become anisotropic and viscosity is given by the Braginskii viscosity tensor (see
Sect. 2.4 for definition and Appendix B for derivation of dominant terms). The components of the
viscosity tensor that remove the Alfvén singularity are the shear components. The parallel and
perpendicular components of anisotropic finite electrical conductivity only differ by a factor of 2,
therefore, we will consider only one of them without loss of generality.

The dynamics of waves in our model is described by the visco-resistive MHD equations given
by Eqs (2.1)–(2.8) with Dv taking the form given in Eq. (2.30) and L = H = 0. Note that even
though anisotropy has been considered the Hall term has been neglected. We neglect the Hall
term from the induction equation, which can be of the order of diffusion term in the solar corona,
because the largest Hall terms in the perpendicular direction relative to the ambient magnetic field
identically cancel. The components of the Hall term in the normal and parallel directions relative
to the ambient magnetic field have no effect on the dynamics of Alfvén waves in dissipative
layers, hence these too are neglected. For full details on the Hall term and the reasoning behind
neglecting it we refer to Appendix A.

We adopt a physical set up identical to that in the Chapter 3 (see discussion in Sect. 3.2).
However, instead of the resonant position being at xc (the slow resonant position), it is at the
Alfvén resonant position x = xa. The definition of the resonant position can now be written
mathematically as

V = vA (xa) cos α, (4.1)

In what follows we can take xa = 0 without loss of generality. The perturbations of the physical
quantities are defined by

ρ = ρ0 + ρ, p = p0 + p, B = B0 + b, P = p +
B0 · b

µ0
+
b2

2µ0
, (4.2)

where P is the perturbation of total pressure.

The dominant dynamics of resonant Alfvén waves, in linear MHD, resides in the components
of the perturbed magnetic field and velocity that are perpendicular to the equilibrium magnetic
field and to the x−direction. This dominant behaviour is created by an x−1 singularity in the
spatial solution of these quantities at the Alfvén resonance (Sakurai et al., 1991b; Goossens and
Ruderman, 1995); these variables are known as large variables. The x−component of velocity, the
components of magnetic field normal and parallel to the equilibrium magnetic field, plasma pres-
sure and density are also singular, however, their singularity is proportional to ln |x|. In addition,
the quantities P and the component of v that is parallel to the equilibrium magnetic field are
regular; all these variables are called small variables.

The definition of the components of velocity and magnetic field that are in the yz−plane and
are either parallel or perpendicular to the equilibrium magnetic field is supplied by Eq. (2.64). The
characteristic scale of inhomogeneity (linh) and Reynolds numbers used in the present chapter
were introduced in Sect. 2.6. The Reynolds numbers are defined by Eq. (2.55). In nonlinear
theory, when studying resonant behaviour in the dissipative layer we must scale the dissipative
coefficients (see, e.g. Ruderman et al., 1997d; Ballai et al., 1998b; Clack and Ballai, 2008). The
overall general scaling to be applied is

η = R−1
a η, η1 = R−1

a η1. (4.3)
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Linear theory predicts that the characteristic thickness of the dissipative layer (ldiss) is of the or-
der of linhR

−1/3
a and we assume that this is true in the nonlinear regime, too. Hence, we must

introduce a stretching transversal coordinate (ξ) in the dissipative layer defined as

ξ = R
1/3
a x. (4.4)

We can rewrite Eqs (2.1)–(2.8) in the scalar form as

V
∂ρ

∂θ
−

∂(ρ0u)

∂x
− ρ0

∂w

∂θ
=

∂(ρu)

∂x
+

∂(ρw)

∂θ
, (4.5)

ρ0V
∂u

∂θ
−

∂P

∂x
+

B0 cos α

µ0

∂bx

∂θ
= ρ

(
u

∂u

∂x
+ w

∂w

∂θ

)
− ρV

∂u

∂θ
−

bx

µ0

∂bx

∂x
−

bz

µ0

∂bx

∂θ
− η1

∂2u

∂x2
, (4.6)

∂

∂θ

(
ρ0Vv⊥ + P sin α +

B0 cos α

µ0
b⊥

)
= ρ

(
u

∂v⊥
∂x

+ w
∂v⊥
∂θ

)

− ρV
∂v⊥
∂θ

−
bx

µ0

∂b⊥

∂x
−

bz

µ0

∂b⊥

∂θ
− η1

∂2v⊥
∂x2

, (4.7)

∂

∂θ

(
ρ0Vv∥ − P cos α +

B0 cos α

µ0
b∥

)
= ρ

(
u

∂v∥

∂x
+ w

∂v∥

∂θ

)

−
bx

µ0

dB0

dx
− ρV

∂v∥

∂θ
−

bx

µ0

∂b∥

∂x
−

bz

µ0

∂b∥

∂θ
− 4η1

∂2v∥

∂x2
, (4.8)

Vbx + B0u cos α = wbx − ubz + η

(
∂bx

∂θ
−

∂bz

∂x

)
, (4.9)

∂

∂θ
(Vb⊥ + B0v⊥ cos α) =

∂(ub⊥)

∂x
+

∂(wb⊥)

∂θ
− bx

∂v⊥
∂x

− bz
∂v⊥
∂θ

− η∇2b⊥, (4.10)

∂

∂θ

(
Vb∥ + B0v∥ cos α

)
−

∂(B0u)

∂x
−B0

∂w

∂θ
=

∂(ub∥)

∂x
+

∂(wb∥)

∂θ
−bx

∂v∥

∂x
−bz

∂v∥

∂θ
−η∇2b∥, (4.11)

V

(
∂p

∂θ
− c2

S
∂ρ

∂θ

)
− u

(
dp0

dx
− c2

S
dρ0

dx

)
=

1

ρ0

{
V

(
γp

∂ρ

∂θ
− ρ

∂p

∂θ

)

−w

[
γp

∂ρ

∂θ
− p

∂p

∂θ

]
+ u

[
ρ
dp0

dx
− γp

dρ0

dx
+ ρ

∂p

∂x
− γp

∂ρ

∂x

]}
(4.12)

P = p +
1

2µ0

(
b2

x + b2
⊥ + b2

∥ + 2B0b∥

)
, (4.13)

∂bx

∂x
+

∂bz

∂θ
= 0. (4.14)

In the above equations ∇ = (∂/∂x, 0, ∂/∂θ) and w = v∥ cos α − v⊥ sin α.

Equations (4.5)-(4.14) will be used throughout the rest of the chapter to derive the governing
equation for the resonant Alfvén waves inside the dissipative layer and to find the nonlinear
corrections.
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4.3 The governing equation in the Alfvén dissipative layer

In order to derive the governing equation for wave motions in the Alfvén dissipative layer we em-
ploy the method of matched asymptotic expansions (see, e.g. Nayfeh, 1981; Bender and Ország,
1991). A simplified version of the method of matched asymptotic expansions is adopted here.
This method was introduced in Sect. 2.7 and utilized in Chapter 3. To begin deriving the gov-
erning equation we refer back to Sect. 2.6. Here we introduced the nonlinearity parameters for
different scenarios. In this case we need Eq. (2.57). This implies that we stretch the dissipative
coefficients as described by Eq. (2.61). We do not rewrite the MHD equations as they are easily
obtained from Eqs (4.5)–(4.14) by substitution of Eq. (2.61).

As discussed in Chapter 2, far away from the dissipative layer the amplitudes of perturbations
are small. So we use linear ideal MHD equations in order to describe the wave motion. The
full set of nonlinear dissipative MHD equations are used for describing wave motion inside the
anisotropic Alfvén dissipative layer where the amplitudes can be large. We, therefore, look for
solutions in the form of asymptotic expansions. The equilibrium quantities change only slightly
across the dissipative layer so it is possible to approximate them by the first non-vanishing term
in their Taylor series expansion with respect to x.

Before deriving the nonlinear governing equation we ought to make a note. In linear theory,
perturbations of physical quantities are harmonic functions of θ and their mean values over a
period are zero. In nonlinear theory, however, the perturbations of variables can have non-zero
mean values as a result of nonlinear interaction of different harmonics. Due to the absorption of
wave momentum, a mean shear flow is generated outside the dissipative layer (see, e.g. Ofman
and Davila, 1995). This result is true for our analysis also and we will deal with this phenomenon
in Chapter 5.

The first step in our mathematical description is the derivation of governing equations outside
the anisotropic Alfvén dissipative layer where the dynamics is described by ideal (η1 = η = 0)
and linear MHD. We use the expansion form of Eq. (3.19). Since the wave motion is described
by the ideal linear MHD equations we recover the governing equations from Sect. 2.7, namely
Eq. (3.20), which has regular singularities at the Alfvén resonance. Hence, the solutions can be
obtained in terms of Fröbenius series with respect to x (for details see Sect. 2.7). The remaining
variables can all be expressed in terms of u(1) and P(1). The form of these variables is given by
Eqs (3.23)–(3.27).

As the characteristic scale of dissipation is of the order of linhR
−1/3
a and we have assumed

that Ra ∼ ϵ−3/2 we obtain that the thickness of the dissipative layer is linhR
−1/3
a = O(ϵ1/2linh),

implying the introduction of a new stretched variable to replace the transversal coordinate in
the dissipative layer, which is defined as ξ = ϵ−1/2x. Again, for brevity, Eqs (4.5)–(4.14) are
not rewritten as they can be obtained by the substitution of Eq. (3.37) for all derivatives. The
equilibrium quantities still depend on x, not ξ (their expression is valid in a wider region than the
characteristic thickness of the dissipative layer). All equilibrium quantities are expanded around
the ideal resonant position (x = 0) as

f0 ≈ f0a + ϵ1/2ξ

(
df0

dx

)

a

, (4.15)

where f0 is any equilibrium quantity and the subscript ‘a’ indicates that the equilibrium quantity
is evaluated at the Alfvén resonant point.
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We seek the solution to the set of equations obtained from Eqs (4.5)–(4.14) by the substitution
of η1 = ϵ3/2η1, η = ϵ3/2η and x = ϵ1/2ξ into variables in the form of power series of ϵ. These
equations contain powers of ϵ1/2, so we use this quantity as an expansion parameter. To derive
the form of the inner expansions of different quantities we have to analyze the outer solutions.
First, since v∥ and P are regular at x = 0 we can write their inner expansions in the form of their
outer expansions [Eq. (3.19)]. The amplitudes of large variables in the dissipative layer are of
the order of ϵ1/2, so the inner expansion of the variables v⊥ and b⊥ is given by Eq. (3.39). The
quantities u, bx, b∥, p and ρ behave as ln |x| in the vicinity of x = 0, which suggests that they
have expansions with terms of the order of ϵ ln ϵ in the dissipative layer. Strictly speaking, the
inner expansions of all variables have to contain terms proportional to ϵ ln ϵ and ϵ3/2 ln ϵ (see, e.g.
Ruderman et al., 1997d). In the simplified version of matched asymptotic expansions we consider
ln ϵ as a quantity of the order of unity (see, e.g. Ballai et al., 1998b; Clack and Ballai, 2008). This
enables us to write the inner expansions for u, bx, b∥, p and ρ in the form of Eq. (3.19).

We now substitute the expansion (3.19) for P, u, bx, b∥, v∥, p and ρ and the expansion given by
Eq. (3.39) for v⊥ and b⊥ into the set of equations obtained from Eqs (4.5)–(4.14) after substitution
of x = ϵ1/2ξ. The first order approximation (terms proportional to ϵ), yields a linear homoge-
neous system of equations for the terms with superscript ’1’. The important result that follows
from this set of equations is that

P(1) = P(1)(θ), (4.16)

that is P(1) does not change across the dissipative layer. This result parallels the result found in
linear theory (see, e.g. Sakurai et al., 1991b; Goossens et al., 1995) and nonlinear theories of slow
resonance (see, e.g. Ruderman et al., 1997d; Ballai et al., 1998b; Clack and Ballai, 2008). Subse-
quently, all remaining variables can be expressed in terms of u(1), v

(1)
⊥ and P(1) as

b(1)
x = −

B0a cos α

V
u(1), b

(1)
⊥ = −

B0aV

v2
Aa

cos α
v

(1)
⊥ , v

(1)
∥ =

c2
Sa

v2
Aa

cos α

ρ0aV
P(1), (4.17)

∂b
(1)
∥

∂θ
=

B0a

(
v2

Aa
− c2

Sa

)

ρ0av4
Aa

dP(1)

dθ
+

u(1)

V

(
dB0

dx

)

a

, (4.18)

∂p(1)

∂θ
=

c2
Sa

v2
Aa

dP(1)

dθ
−

u(1)

V

B0a

µ0

(
dB0

dx

)

a

,
∂ρ(1)

∂θ
=

1

v2
Aa

dP(1)

dθ
+

u(1)

V

(
dρ0

dx

)

a

. (4.19)

The subscript ’a’ indicates that the equilibrium quantity has been calculated at x = xa = 0. In
addition, the relation that connects the normal and perpendicular components of velocity is

∂u(1)

∂ξ
− sin α

∂v
(1)
⊥

∂θ
= 0. (4.20)

In the second order approximation we only use the expressions obtained from Eqs (4.7) and
(4.10)1. Employing Eqs (4.17)–(4.20), we replace the variables in the second order approximation
which have superscript ‘1’. The equations obtained in the second order are

∂P(1)

∂θ
sin α+

B0a cos α

µ0

∂b
(2)
⊥

∂θ
+Vρ0a

∂v
(2)
⊥

∂θ
=

[
B0aV

µ0v2
Aa

(
dB0

dx

)

a

− V

(
dρ0

dx

)

a

]
ξ

∂v
(1)
⊥

∂θ
−η1

∂2v
(1)
⊥

∂ξ2
,

(4.21)
1We only need these two equations because the dominant dynamics when studying resonant Alfvén waves are in the

perpendicular components of magnetic field and velocity.
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V
∂b

(2)
⊥

∂θ
+ B0a cos α

∂v
(2)
⊥

∂θ
+ cos α

(
dB0

dx

)

a

ξ
∂v

(1)
⊥

∂θ
= η

B0aV

v2
Aa

cos α

∂2v
(1)
⊥

∂ξ2
. (4.22)

Once the variables with superscript ‘2’ have been eliminated from the above two equations, the
governing equation for resonant Alfvén waves inside the dissipative layer is derived as

∆aξ
∂v

(1)
⊥

∂θ
+

V

ρ0a

(η1 + ρ0aη)
∂2v

(1)
⊥

∂ξ2
= −

V sin α

ρ0a

dP(1)

dθ
, (4.23)

where
∆a = − cos2 α

(
dv2

A

dx

)

a

.

It is clear that Eq. (4.23) does not contain nonlinear terms despite considering the full MHD
system of equations. This result is in stark contrast with the results obtained for nonlinear slow
resonance where the governing equation was found to be always nonlinear (see, e.g. Ruderman
et al., 1997d; Ballai et al., 1998b; Clack and Ballai, 2008). The governing equation (4.23) suggests
that resonant Alfvén waves can be described by the linear theory unless their amplitudes inside
the dissipative layer is of the order of unity.

As the quadratic nonlinear terms cancel each other out, it is natural to take into account cubic
nonlinearity (the system of MHD equations contain cubic nonlinear terms), where the nonlinear-
ity parameter is defined as Eq. (2.59) and the stretched dissipative coefficients are given by Eq.
(2.63). However, despite the higher order nonlinearity we arrive at the identical compatibility
equations (4.21) and (4.22). This leads to a similar governing equation to the one derived for
quadratic nonlinearity (4.23). We do not write out the calculations here as they are identical to
the ones carried out for the quadratic nonlinearity, just with different stretched dissipative coef-
ficients. These results require finding an explanation to the linear behaviour of waves inside the
dissipative layer. The following section will be devoted to the study of nonlinear corrections in
the Alfvén dissipative layer.

4.4 Nonlinear corrections in the Alfvén dissipative layer

Since we have assumed that waves have small dimensionless amplitude outside the dissipative
layer, we will concentrate only on the solutions inside the anisotropic Alfvén dissipative layer.
In our analysis we use the assumptions and equations presented in Sect. 4.3, however, we will
not impose any relation between ϵ and R. Equations (4.3) and (4.4) will be used to define the
scaled dissipative coefficients and stretching transversal coordinate in the dissipative layer. For
simplicity we denote β̃ = R

−1/3
a . This means that our scaled dissipative coefficients and stretched

transversal coordinate become

η1 = β̃3η1, η = β̃3η, ξ = β̃−1x. (4.24)

The first step to accomplish our task is to rewrite Eqs (4.5)–(4.14) by substituting

∂

∂x
= β̃−1 ∂

∂ξ
,

∂

∂z
=

∂

∂θ
, and ∂

∂t
= −V

∂

∂θ
. (4.25)

All equilibrium quantities (which are still dependent on x, not ξ) will be approximated by the first
non-vanishing term of their Taylor expansion [see, Eq. (4.15)].
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The substitution of Eqs (4.15), (4.24)–(4.25) will transform Eqs (4.5)–(4.14) into

ρ0
∂u

∂ξ
+ β̃u

dρ0

dx
+

∂(ρu)

∂ξ
− β̃

∂

∂θ
[ρ (V − w)] = 0, (4.26)

1

ρ

[
∂P

∂ξ
−

bx

µ0

∂bx

∂ξ
−

β̃

µ0
(B0 cos α + bz)

∂bx

∂θ

]
= β̃ (V − w)

∂u

∂θ
− u

∂u

∂ξ
+ β̃2 η1

ρ0

∂2u

∂ξ2
, (4.27)

1

ρ

[
β̃

∂P

∂θ
sin α +

bx

µ0

∂b⊥

∂ξ
+

β̃

µ0
(B0 cos α + bz)

∂b⊥

∂θ

]
= −β̃ (V − w)

∂v⊥
∂θ

+ u
∂v⊥
∂ξ

− β̃2 η1

ρ0

∂2v⊥
∂ξ2

,

(4.28)

1

ρ

[
β̃

∂P

∂θ
cos α −

bx

µ0

∂b∥

∂ξ
−

β̃

µ0
(B0 cos α + bz)

∂b∥

∂θ
−

β̃

µ0

dB0

dx
bx

]
=

β̃ (V − w)
∂v∥

∂θ
− u

∂v∥

∂ξ
+ β̃2 4η1

ρ0

∂2v∥

∂ξ2
, (4.29)

β̃ (V − w)
∂bx

∂θ
+ β̃ (B0 cos α + bz)

∂u

∂θ
+ β̃2η

(
∂2

∂ξ2
+ β̃2 ∂2

∂θ2

)
bx = 0, (4.30)

β̃ (V − w)
∂b⊥

∂θ
− u

∂b⊥

∂ξ
− b⊥

(
∂u

∂ξ
+ β̃

∂v∥

∂θ
cos α

)
+ bx

∂v⊥
∂ξ

+ β̃
(
B0 + b∥

) ∂v⊥
∂θ

cos α + β̃2η

(
∂2

∂ξ2
+ β̃2 ∂2

∂θ2

)
b⊥ = 0, (4.31)

β̃ (V − w)
∂b∥

∂θ
− u

(
∂b∥

∂ξ
+ β̃

dB0

dx

)
+ bx

∂v∥

∂ξ
− β̃b⊥

∂v∥

∂θ

−
(
B0 + b∥

)(∂u

∂ξ
− β̃

∂v⊥
∂θ

sin α

)
+ β̃2η

(
∂2

∂ξ2
+ β̃2 ∂2

∂θ2

)
b∥ = 0, (4.32)

[
β̃ (V − w)

∂

∂θ
− u

∂

∂ξ

](
p

ργ

)
= 0, (4.33)

P = p +
B0

µ0
b∥ +

1

2µ0

(
b2

x + b2
⊥ + b2

∥

)
. (4.34)

There is only one condition we need to impose when deriving the nonlinear corrections to
resonant Alfvén waves in the anisotropic dissipative layer. This must be imported from the linear
theory which predicts that in the dissipative layer ‘large’ variables have dimensionless amplitude
of the order of ϵR1/3 (see Sect. 2.5). We assume that the dimensionless amplitudes of the linear
approximation of ‘large’ variables (v⊥ and b⊥) in the dissipative layer are small2, such that

ϵ ≪ R
−1/3
a (= β̃). (4.35)

This condition ensures that the dimensionless amplitude of oscillations of large variables remains
less than unity inside the dissipative layer. From a naive point of view the linear theory is appli-
cable as soon as the oscillation amplitude is small. The example of slow resonant waves clearly

2This condition is critical. If we have the dimensionless amplitude of large variables inside the dissipative layer greater
than unity our asymptotic analysis breaks down.
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PLASMAS

shows that this is not the case. The nonlinear effects become important in the isotropic slow dissi-
pative layer as soon as ϵ ∼ R

−2/3
c , i.e. as soon as the oscillation amplitude in the dissipative layer,

which is of the order of ϵR1/3, is of the order of R
−1/3
c ≪ 1. For example, in the corona pertur-

bations with dimensionless amplitudes less than 10−4 can be considered by this theory. From Eq.
(2.57) we would expect to see quadratic nonlinearity appear for waves with dimensionless am-
plitudes larger than 10−8 and from Eq. (2.59) we would expect to see cubic nonlinearity appear
for waves with dimensionless amplitudes larger than 10−6. If we take ϵ ≈ R

−1/3
a we find that

inside the dissipative layer we have dimensionless amplitudes of the order of unity. This causes
a breakdown in our theory, and therefore another approach would have to be adopted. At this
time we do not know of an analytical study which can carry out this task without considering the
full nonlinear MHD equations throughout the domain.

We now assume that all perturbations can be written as a regular asymptotic expansion of the
form

f = f0(x) + ϵf1(ξ, θ) + ϵ2f2(ξ, θ) + . . . , (4.36)

where f0(x) represents the equilibrium value. Substitution of expansion (4.36) into the system
(4.26)–(4.34) leads to a system of equations which contains the small parameter β̃. This observa-
tion inspires us to look for the solution in the form of expansions with respect to β̃. In order to
cast large and small variables in this description we are going to use the following expansion for
small variables (u, bx, v∥, b∥, ρ, p and P)

g1 = g
(1)
1 + β̃g

(2)
1 + . . . , (4.37)

while large variables (v⊥ and b⊥) will be expanded according to

h1 = β̃−1h
(1)
1 + h

(2)
1 + . . . . (4.38)

The bar notation is used here to distinguish between these expansions and the expansions used
in the previous sections and chapters. From this point on we drop the bar notation.

Substituting Eqs (4.37), (4.38) into the system (4.26)–(4.34), taking terms proportional to ϵ and
then only retaining terms with the lowest power of β̃, results in the set of linear equations

ρ0
∂v

(1)
⊥1

∂θ
sin α − ρ0

∂u
(1)
1

∂ξ
= 0, (4.39)

∂P
(1)
1

∂ξ
= 0, (4.40)

ρ0V
∂v

(1)
⊥1

∂θ
+

B0 cos α

µ0

∂b
(1)
⊥1

∂θ
= 0, (4.41)

∂P
(1)
1

∂θ
cos α − ρ0V

∂v
(1)
∥1

∂θ
−

b
(1)
x1

µ0

(
dB0

dx

)
−

B0 cos α

µ0

∂b
(1)
∥1

∂θ
= 0, (4.42)

V
∂b

(1)
x1

∂θ
+ B0 cos α

∂u
(1)
1

∂θ
= 0, (4.43)

V
∂b

(1)
⊥1

∂θ
+ B0 cos α

∂v
(1)
⊥1

∂θ
= 0, (4.44)
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B0
∂u

(1)
1

∂ξ
− B0 sin α

∂v
(1)
⊥1

∂θ
= 0, (4.45)

ρ0V
∂p

(1)
1

∂θ
− ρ0c2

SV
∂ρ

(1)
1

∂θ
+ ρ0u

(1)
1

[
c2

S

(
dρ0

dx

)
−

(
dp0

dx

)]
= 0, (4.46)

P
(1)
1 − p

(1)
1 −

B0

µ0
b

(1)
∥1 = 0. (4.47)

We have dropped the notation of the subscript ’a’ but, all equilibrium quantities are still calcu-
lated at x = 0.

Using these equations we can express all dependent variables in terms of u
(1)
1 , v

(1)
⊥1 and P

(1)
1 ,

b
(1)
x1 = −

B0 cos α

V
u

(1)
1 , b

(1)
⊥1 = −

B0V

v2
A cos α

v
(1)
⊥1 , v

(1)
∥1 =

c2
S

v2
A

cos α

ρ0V
P

(1)
1 , (4.48)

∂b
(1)
∥1

∂θ
=

B0

(
v2

A − c2
S

)

ρ0v4
A

dP
(1)
1

dθ
+

u
(1)
1

V

(
dB0

dx

)
, (4.49)

∂p
(1)
1

∂θ
=

c2
S

v2
A

dP
(1)
1

dθ
−

u
(1)
1

V

B0

µ0

(
dB0

dx

)
,

∂ρ
(1)
1

∂θ
=

1

v2
A

dP
(1)
1

dθ
+

u
(1)
1

V

(
dρ0

dx

)
. (4.50)

It follows from Eq. (4.40) that
P

(1)
1 = P

(1)
1 (θ). (4.51)

Finally, we obtain the relation between u
(1)
1 and v

(1)
⊥1 ,

∂u
(1)
1

∂ξ
=

∂v
(1)
⊥1

∂θ
sin α. (4.52)

Note that Eqs (4.48)–(4.52) are formally identical to Eqs (4.17)–(4.20) for the linear approxima-
tion in Sect. 4.3. This is not surprising as both methods are designed to replicate linear theory in
the first order approximation.

Now that the first order terms are known we can proceed to derive the second and third
order approximations with respect to ϵ [i.e. terms from the expansion of Eqs (4.26)–(4.34) that are
proportional to ϵ2 and ϵ3, respectively]. First, we write out the second order approximations and
substitute for all first order terms [i.e. terms of the form f

(1)
1 ] using Eqs (4.48)–(4.52). Secondly, we

find (by solving the inhomogeneous system) the expansions of second order terms (terms with
subscript ‘2’). Thirdly, we derive the second order relations between all variables, similar to the
ones obtained in the first order approximation.

The equations representing the second order approximation with respect to ϵ (with variables
in the first order substituted) are

ρ0
∂u2

∂ξ
+ β̃

[
ξ

(
dρ0

dx

)
∂u2

∂ξ
− V

∂ρ2

∂θ
+ ρ0

(
∂v∥2

∂θ
cos α −

∂v⊥2

∂θ
sin α

)
+

(
dρ0

dx

)
u2

]

=
v

(1)
⊥1

v2
A

dP
(1)
1

dθ
sin α + O(β̃), (4.53)

∂P2

∂ξ
− β̃

[
ρ0V

∂u2

∂θ
+

B0 cos α

µ0

∂bx2

∂θ

]
= O(β̃), (4.54)



70
CHAPTER 4. THE VALIDITY OF NONLINEAR RESONANT ALFVÉNWAVES IN SPACE
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∂P2

∂θ
sin α + ρ0V

∂v⊥2

∂θ
+

B0 cos α

µ0

∂b⊥2

∂θ
+ β̃

{
ξ

[
V

(
dρ0

dx

)
∂v⊥2

∂θ

+
cos α

µ0

(
dB0

dx

)
∂b⊥2

∂θ

]
+ η1

∂2v⊥2

∂ξ2

}
= O(β̃−1), (4.55)

∂P2

∂θ
cos α − ρ0V

∂v∥2

∂θ
−

bx2

µ

(
dB0

dx

)
−

B0 cos α

µ0

∂b∥2

∂θ
− β̃

{
4η1

∂2v∥2

∂ξ2

+ξ

[
V

(
dρ0

dx

)
∂v∥2

∂θ
+

cos α

µ0

(
dB0

dx

)
∂b∥2

∂θ

]}
= β̃−1

[
cos α sin α

V
v

(1)
⊥1

dP
(1)
1

dθ

]
+ O(1), (4.56)

V
∂bx2

∂θ
+ B0 cos α

∂u2

∂θ
+ β̃

[
η

∂2bx2

∂ξ2
+ ξ cos α

(
dB0

dx

)
∂u2

∂θ

]
= O(1), (4.57)

V
∂b⊥2

∂θ
+ B0 cos α

∂v⊥2

∂θ
+ β̃

[
η

∂2b⊥2

∂ξ2
+ ξ cos α

(
dB0

dx

)
∂v⊥2

∂θ

]
= O(β̃−1), (4.58)

B0
∂u2

∂ξ
+ β̃

{[
u2 + ξ

∂u2

∂ξ

](
dB0

dx

)
− B0 sin α

∂v⊥2

∂θ
− V

∂b∥2

∂θ

}
=

B0 sin α

ρ0v2
A

v
(1)
⊥1

dP
(1)
1

dθ
+ O(β̃),

(4.59)

ρ0V
∂p2

∂θ
− ρ0c2

SV
∂ρ2

∂θ
+ ρ0u2

[
c2

S

(
dρ0

dx

)
−

(
dp0

dx

)]
= O(β̃−1), (4.60)

P2 − p2 −
B0

µ0
b∥2 + β̃

[
ξ

µ0

(
dB0

dx

)
b∥2

]
= β̃−2

[
ρ0

2
v

(1)
⊥1

2
]

+ O(β̃−1). (4.61)

It is clear that nonlinear terms appear from this order of approximation and they are expressed
in terms of variables obtained in the first order. The analysis of the system of Eqs (4.53)–(4.61)
reveals that the expansions with respect to β̃ has to be written in the form

g2 = β̃−1g
(1)
2 + g

(2)
2 + β̃g

(3)
2 + . . . , (4.62)

for u2, bx2, v⊥2, b⊥2 and P2 and

h2 = β̃−2h
(1)
2 + β̃−1h

(2)
2 + h

(3)
2 + . . . , (4.63)

for v∥2, b∥2, p2 and ρ2.
Here we need to make a note. It follows from Eqs (4.62) and (4.63) that the ratio of ρ2 to

ρ1 is of the order of ϵβ̃−2, and the same is true for v∥2, b∥2 and p2. It seems to be inconsistent
with the regular perturbation method where it is assumed that the next order approximation is
always smaller than the previous one. However, this problem is only apparent. To show this we
need to clarify the exact mathematical meaning of the statement “in the asymptotic expansion
each subsequent term is much smaller than the previous one”. To do this we introduce the nine-
dimensional vector U =

(
u, v∥, v⊥, bx, b∥, b⊥, P, p, ρ

)
and consider it as an element of a Banach

space3. The norm in this space can be introduced in different ways. One possibility is

||U|| =

∫L

0
dθ

∫∞

−∞
|U| dξ, (4.64)

3We choose a Banach space because it is a vector space which has a norm such that every Cauchy sequence has a limit
within the space.
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where L is the period. The asymptotic expansion in the dissipative layer [Eq. (4.36)] can be
rewritten as U = U0 + ϵU1 + ϵ2U2 + . . .. Then the mathematical formulation of the statement
“each subsequent term is much smaller than the previous one” is ||Un+1|| ≪ ||Un||, n = 1, 2, . . ..
It is straightforward to verify that [in accordance with Eqs (4.37), (4.38), (4.62) and (4.63)] ||U2|| ≪
||U1||.

Once the expansions (4.62) and (4.63) are substituted into Eqs (4.53)–(4.61), we can express the
variables in this order of approximation as

b
(1)
x2 = −

B0 cos α

V
u

(1)
2 , b

(1)
∥2 = −

B0

2v2
A

v
(1)
⊥1

2
, v

(1)
∥2 =

cos α

2V
v

(1)
⊥1

2
, (4.65)

b
(1)
⊥2 = v

(1)
⊥2 = 0, p

(1)
2 = ρ

(1)
2 = 0. (4.66)

For the total pressure we obtain that

∂P
(1)
2

∂ξ
= 0 =⇒ P

(1)
2 = P

(1)
2 (θ). (4.67)

In addition, we obtain that the equation which determines u
(1)
2 is

∂u
(1)
2

∂ξ
= −

cos2 α

V
v

(1)
⊥1

∂v
(1)
⊥1

∂θ
. (4.68)

Since the large variables in this order of approximation are v∥2 and b∥2, we can deduce that the
linear order of approximation of resonant Alfvén waves in the dissipative layer excite magnetoa-
coustic modes in the second order of approximation. The excitation comes from the nonlinear
term found in the second order approximation of the pressure equation, this drives the parallel
components of the velocity and magnetic field perturbations. Since we are focussed on the Alfvén
resonance only, these waves are not resonant. These waves act to cancel the very small pressure
and density perturbations created by the first order approximation.

We now calculate the third order approximation with respect to ϵ. On analyzing the third
order system of equations we deduce that the large variables in this order of approximation are
Alfvénic (v(1)

⊥3 , b
(1)
⊥3), so we only need the perpendicular components of momentum and induction

equations given by Eqs (4.28) and (4.31), respectively. First, since some of the first order approx-
imation terms contribute to the third order approximation in integral form we must introduce a
new notation

U
(1)
1 =

∫
u

(1)
1 dθ. (4.69)

The third order approximation of the perpendicular component of momentum is

∂P3

∂θ
sin α + ρ0V

∂v⊥3

∂θ
+

B0 cos α

µ0

∂b⊥3

∂θ
+ β̃

{
ξ

[
V

(
dρ0

dx

)
∂v⊥3

∂θ
+

cos α

µ0

(
dB0

dx

)
∂b⊥3

∂θ

]

+η1
∂2v⊥3

∂ξ2

}
= β̃−2

{
∂v

(1)
⊥1

∂ξ

[
u

(1)
1 P

(1)
1

v2
A

+
u

(1)
1 U

(1)
1

V

(
dρ0

dx

)]}
+ O(β̃−1), (4.70)

while the perpendicular component of magnetic induction equation is

V
∂b⊥3

∂θ
+ B0 cos α

∂v⊥3

∂θ
+ β̃

[
η

∂2b⊥3

∂ξ2
+ ξ cos α

(
dB0

dx

)
∂v⊥3

∂θ

]
= O(β̃−2), (4.71)
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Note that in obtaining the third order approximations we have employed all the relations we have
for variables in the first and second order of approximation.

Equations (4.70) and (4.71) clearly show that the nonlinear terms on the right-hand sides do
not cancel. This implies that the expansion of v⊥3 and b⊥3 should be of the form

h3 = β̃−3h
(1)
3 + β̃−2h

(2)
3 + β̃−1h

(3)
3 + . . . . (4.72)

We should state, for completeness, that if we derive the third order approximation for all the Eqs
(4.26)-(4.34) we obtain the expansions for u3, bx3, v∥3, b∥3, p3, ρ3 and P3 to be

g3 = β̃−2g
(1)
3 + β̃−1g

(2)
3 + g

(3)
3 + . . . . (4.73)

The expansions calculated for all the variables can now be collected together and we can write
the expansions for ‘large’ and ‘small’ variables in the dissipative layer when studying resonant
Alfvén waves. Large variables (v⊥ and b⊥) have the expansion

h =

(
ϵ

β̃

)
h

(1)
1 + ϵ

(
ϵ

β̃

)
h

(1)
2 +

(
ϵ

β̃

)3

h
(1)
3 + . . . , (4.74)

and the expansion of small variables (u, bx, v∥, b∥, p, ρ and P) is defined as

g = ϵg
(1)
1 +

(
ϵ

β̃

)2

g
(1)
2 + ϵ

(
ϵ

β̃

)2

g
(1)
3 + . . . . (4.75)

Since Eq. (4.35) is the only condition enforced in the dissipative layer, we can state that

1 >

(
ϵ

β̃

)
>

(
ϵ

β̃

)2

>

(
ϵ

β̃

)3

> . . . . (4.76)

Therefore, since both Eqs (4.74) and (4.75) contain successive higher powers of the parameter
ϵ/β̃ we can deduce that [considering Eq. (4.76)] higher orders of approximation of large and small
variables become increasingly insignificant in comparison to the linear order of approximation.
So resonant Alfvén waves in the dissipative layer can be described accurately by linear theory if
condition (4.35) is satisfied.

4.5 Conclusions
In the present chapter we have investigated the nonlinear behaviour of resonant Alfvén waves
in the dissipative layer in one-dimensional planar geometry in plasmas with anisotropic dissipa-
tive coefficients, a situation applicable to solar coronal conditions. The plasma motion outside
the dissipative layer is described by the set of linear, ideal MHD equations. The wave motion
inside the dissipative layer is governed by Eq. (4.23). This equation is linear, despite taking into
consideration (quadratic and cubic) nonlinearity. The Hall terms of the induction equation in the
perpendicular direction relative to the ambient magnetic field cancel each other out.

The nonlinear corrections were calculated to explain why Eq. (4.23), describing the nonlinear
behaviour of wave dynamics, is always linear. We found that, in the second order of approxima-
tion, magnetoacoustic modes are excited by the perturbations of the linear order of approxima-
tion. These secondary waves act to counteract the small pressure and density variations created
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by the first order terms. In addition, these waves are not resonant in the Alfvén dissipative layer.
In the third order approximation the perturbations become Alfvénic, however, these perturba-
tions are much smaller than those in the linear order of approximation. Equations (4.74) and
(4.75) describe the expansion of large and small variables, respectively; and demonstrate that all
higher order approximations of both large and small variables at the Alfvén resonance are smaller
than the linear order approximation, provided condition (4.35) is satisfied. This condition ensures
that the oscillation amplitude remains small inside the dissipative layer. From a naive point of
view the linear theory is applicable as soon as the oscillation amplitude is small. The example of
slow resonant waves clearly shows that this is not the case (see discussion in Sect. 4.4). We also
found that any dispersive effect due to the consideration of ions’ inertial length (Hall effect) is
absent from the governing equation.

This calculation of nonlinear corrections to resonant Alfvén waves in dissipative layers allows
us to apply the already well-known linear theory for studying resonant Alfvén waves in the solar
corona with great accuracy, where the governing equation, jump conditions and the absorption
of wave energy are already derived (see, e.g. Sakurai et al., 1991b; Goossens et al., 1995; Erdélyi,
1998). It is interesting to note that this work can be transferred to isotropic plasma rather eas-
ily. Shear viscosity, supplied by Braginskii’s viscosity tensor (see Appendix B), acts exactly as
isotropic viscosity. Therefore, replacing η1 by ρ0aν in Eq. (4.23) provides the required governing
equation for resonant Alfvén waves in isotropic plasmas. Moreover, the work on the nonlinear
corrections presented in this chapter is also unaltered by anisotropy. This implies that we can
consider resonant Alfvén waves in dissipative layers throughout the solar atmosphere and still
use linear theory if condition (4.35) is satisfied. We will use the governing equation derived here
in Chapter 5 to study the generated mean shear flow at the Alfvén resonance and in Chapter 6 to
investigate the wave energy absorption at the Alfvén resonance.
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PLASMAS



5
Mean shear flows generated by resonant

Alfvén waves

In the context of resonant absorption, nonlinearity has two different manifestations. The first is the reduc-
tion in amplitude of perturbations around the resonant point (wave energy absorption). The second is the
generation of mean shear flows outside the dissipative layer surrounding the resonant point. Ruderman
et al. (1997d) and Ballai et al. (2000) studied both these effects at the slow resonance in isotropic plasmas
in cartesian and cylindrical geometry, respectively. We investigated nonlinearity at the Alfvén resonance
in Chapter 4, however, we did not include the generation of mean shear flow. In this present chapter, we
investigate the mean shear flow, analytically, and study its properties. We find that the flow generated
is parallel to the magnetic surfaces and has a characteristic velocity proportional to ϵ1/2, where ϵ is the
dimensionless amplitude of perturbations far away from the resonance. This is, qualitatively, similar to
the flow generated at the slow resonance. The jumps in the derivatives of the parallel and perpendicular
components of mean shear flow across the dissipative layer are derived. We estimate the generated mean
shear flow to be of the order of 10kms−1 in both the solar upper chromosphere and solar corona, however,
the value strongly depends on the choice of boundary conditions. It is proposed that the generated mean
shear flow can produce a Kelvin–Helmholtz instability (KHI) at the dissipative layer which can create tur-
bulent motions. The KHI would be an addition to the KHI that may already exist due to the velocity field
of the resonant Alfvén waves. This flow can also be superimposed onto existing large scale motions in the
solar upper atmosphere. The results of the present chapter were published in Physics of Plasmas (Clack and
Ballai, 2009a).

It is not enough to have a good mind. The main thing is to use it well.
(Rene Descartes 1596 − 1650)
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5.1 Introduction

It has long been established, from observations, that the solar corona is highly structured and in-
homogeneous with temperatures of the order of 106K. The solar corona is filled with a large num-
ber of discrete magnetic loops (coronal arcades) and there is an abundance of observational evi-
dence showing that magnetohydrodynamic (MHD) waves propagate in, and across, these loops
(see, e.g. Hassler et al., 1990; Saba and Strong, 1991; Young et al., 1999; Banerjee et al., 2007). In
order to sustain such high temperatures whilst combatting optically thin radiation and thermal
conduction there must exist some mechanism(s) acting as a source of steady heating. The last
few decades saw a multitude of models proposed to tackle the complicated problem of coronal
heating, such as heating by waves (e.g. resonant absorption, phase mixing) or heating by mag-
netic relaxation (e.g. reconnection). There is an increasing consensus that all these processes act
simultaneously to different degrees of efficiency throughout the solar corona (see discussion in
Sect. 1.3).

A new understanding of the process of resonant absorption became available after the study
by Ruderman et al. (1997d) which was the first analytical study on the nonlinear aspect of reso-
nant absorption. Not only was it shown that resonant absorption of slow waves was an inherently
nonlinear phenomenon, they also showed that a mean shear flow is generated outside the dissi-
pative layer. By their calculations, however, they still found the generated flow was much too
large compared to the observed velocities. On the other hand, the authors did note that their re-
sults should be used with caution in the solar atmosphere as some of their assumptions were not
fully realistic for that environment.

From the coronal heating point of view, the slow resonance studied by Ruderman et al. (1997d)
is not expected to contribute significantly as the energy stored in slow waves is much less than
the required energy to compensate the losses. In addition, it is difficult for slow waves to reach
the corona, as they become shocked as they climb due to density stratification (although they can
be generated locally). From this point of view, Alfvén waves and Alfvén resonance are of much
greater interest as estimations show that the energy carried by Alfvén waves is much higher and
they can reach the corona without significant damping. The validity of nonlinear resonant Alfvén
waves (under coronal conditions) was studied in great detail in Chapter 4, where we showed that
in coronal plasmas the nonlinear addition to the result found in linear MHD is so small that the
linear approach can be used with great accuracy. Essentially we clarified the upper limit in which
linear theory is applicable to resonant Alfvén waves.

Studies have been carried out to investigate the properties of shear flows generated by velocity
field of Alfvén waves, however, nearly all of these have been numerical due to analytical com-
plications when considering nonlinearity, turbulence and resonant absorption simultaneously.
These studies have found that shear flows could give rise to a Kelvin–Helmholtz instability at
the narrow dissipative layer (see, e.g. Ofman and Davila, 1995). This instability can drive tur-
bulent motions and, in turn, locally enhance transport coefficients which can alter the efficiency
of heating (see, e.g. Karpen et al., 1994; Ofman et al., 1994; Ofman and Davila, 1995). None of
these investigations have studied the generation of mean shear flow at the Alfvén resonance by
nonlinear interactions. The generation of mean shear flow can supply additional shear enhancing
turbulent motions. Recent advancements in the understanding of nonlinear Alfvén resonance has
inspired us to study of the generation of mean shear flows at the Alfvén resonance. In the present
chapter we will derive the equations describing the generated mean shear flow outside the Alfvén
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dissipative layer and estimate the magnitude of the shear flow. We already know (from, e.g. Of-
man and Davila, 1995) that the plasma velocity at the dissipative layer may be reduced by the
turbulent enhancement of the dissipative parameters, implying that for a given heating rate, the
wave amplitude is reduced compared to the linear case. This means that any result we produce
must be reduced when considered for the solar corona since turbulent motions are likely to be
present and this will reduce the mean flow speed.

5.2 Governing equations and assumptions

To mathematically study the mean shear flow generated at resonance we use the visco-resistive
MHD equations. We discussed in Sect. 2.4 that when the products ωiτi ≫ 1, ωeτe ≫ 1 are much
greater than unity (as in the solar corona) the viscosity and finite electrical conductivity become
anisotropic. Another possible additive to our model might be dispersive effects caused by Hall
currents, however, in Appendix A we showed that this effect does not alter the MHD waves in
the vicinity of the Alfvén resonance. We therefore use Eqs (2.1)–(2.8) with Dv taking the form of
Eq (2.30) andH = L = 0.

We use an identical physical set up as in Chapter 4 so that we can utilize the governing equa-
tion (4.23). Hence, we adopt Cartesian coordinates x, y, z and limit our analysis to a static back-
ground equilibrium (v0 = 0). We, also, assume that all equilibrium quantities (terms with sub-
script ‘0’) depend on x only. The equilibrium magnetic field, B0, is unidirectional and lies in the
yz−plane and the equilibrium quantities must satisfy the condition of total pressure balance. For
simplicity we assume that the perturbations of all quantities are independent of y (∂/∂y = 0).
We note that since the magnetic field is not aligned with the z−axis, an Alfvén resonance can still
exists. Even though the Alfvén resonance is governed by a linear equation, we must consider non-
linear effects to obtain the second manifestation of nonlinearity; the mean shear flow generated
outside the dissipative layer.

We know that in linear theory of driven waves all perturbed quantities oscillate with the same
frequency, ω, which means that they can be Fourier-analysed and taken to be proportional to
exp(i[kz−ωt]). We assume this extends to nonlinear theory. In the context of resonant absorption
the phase velocity, V , must match the projection of the Alfvén velocity, vA, onto the z−axis when
x = xa where xa is the resonant position. We defined the Alfvén resonant position mathematically
in Eq. (4.1). In what follows we can take xa = 0 without loss of generality. The perturbations of
the physical quantities are defined by Eq. (4.2). As it was shown in Chapter 4, the dominant
dynamics of resonant Alfvén waves resides in the components of the perturbed magnetic field
and velocity that are perpendicular to the equilibrium magnetic field and to the x−direction. This
dominant behaviour is created by an 1/x singularity in the spatial solution of these quantities at
the Alfvén resonance (see, e.g. Sakurai et al., 1991b; Goossens, 1994; Goossens et al., 1995; Clack
et al., 2009b). The variables that are dominant inside the dissipative layer are known as large
variables, while all other variables are known as small variables.

To help make the mathematical analysis more concise we define the components of velocity
and magnetic field that are in the yz−plane and are either parallel or perpendicular to the equi-
librium magnetic field as in Eq. (2.64). As we are studying resonant Alfvén waves in anisotropic
plasmas we must adopt the Reynolds numbers given by Eq. (2.55), with the consequence of utiliz-
ing the nonlinearity parameter (2.57) and the stretched dissipative coefficients given in Eq. (2.61).
We note that the aim of the present chapter is to study the generation of a mean shear flow outside
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the Alfvén dissipative layer due to the nonlinear behaviour of driven resonant Alfvén waves in
the dissipative layer. We are not interested in the effects of MHD waves that have large amplitude
everywhere and require a nonlinear description in the whole space. We focus on waves that have
small dimensionless amplitude ϵ ≪ 1 far away from the ideal Alfvén resonant point.

In the linear theory all perturbed quantities are harmonic functions of θ, therefore their mean
values over a period vanish. On the other hand, in nonlinear theory the perturbed variables
can have nonzero mean values as a result of nonlinear interaction of different harmonics. Let us
introduce the mean value of a function f(θ) over a wavelength L as

⟨f⟩ =
1

L

∫L

0
f(θ) dθ. (5.1)

It directly follows from Eqs (2.1) and (2.6) that

⟨ρu⟩ = ⟨bx⟩ = 0. (5.2)

We can always define the background state in such a way that the mean values of density, pressure
and magnetic field vanish:

⟨ρ⟩ = ⟨p⟩ = ⟨b∥⟩ = ⟨b⊥⟩ = 0. (5.3)

This is not possible for the velocity parallel and perpendicular to the equilibrium magnetic field
(since we have assumed a static equilibrium). It is convenient, therefore, to divide v∥ and v⊥ into
mean and oscillatory parts. Using the Reynolds decomposition we can write

U∥ = ⟨v∥⟩, ṽ∥ = v∥ − U∥, U⊥ = ⟨v⊥⟩, ṽ⊥ = v⊥ − U⊥. (5.4)

The quantities U∥ and U⊥ describe the mean flow parallel to the magnetic surfaces. The mean
flow is generated by the nonlinear interaction of the harmonics in the Fourier expansion of the
perturbed quantities with respect to θ.

The Eqs (2.1)–(2.8) were rewritten to their scalar form in Eqs (4.5)–(4.14). The equations for U⊥

and U∥ are obtained by averaging Eqs (4.7) and (4.8), respectively, and then dividing by ρ,

η1

ρ

d2U⊥

dx2
=

〈
u

∂v⊥
∂x

〉
+

〈
v∥

∂v⊥
∂θ

〉
cos α −

〈
1

ρ

∂P

∂θ

〉
sin α −

B0 cos α

µ0

〈
1

ρ

∂b⊥

∂θ

〉

−
1

µ0

〈
bx

ρ

∂b⊥

∂x

〉
−

cos α

µ0

〈
b∥

ρ

∂b⊥

∂θ

〉
+

sin α

µ0

〈
b⊥

ρ

∂b⊥

∂θ

〉
. (5.5)

η1

ρ

d2U∥

dx2
=

〈
u

∂v∥

∂x

〉
+

〈
v∥

∂v⊥
∂θ

〉
cos α +

〈
1

ρ

∂P

∂θ

〉
cos α −

B0 cos α

µ0

〈
1

ρ

∂b∥

∂θ

〉

−
1

µ0

〈
bx

ρ

∂b∥

∂x

〉
−

cos α

µ0

〈
b∥

ρ

∂b∥

∂θ

〉
+

sin α

µ0

〈
b⊥

ρ

∂b∥

∂θ

〉
−

1

µ0

dB0

dx

〈
bx

ρ

〉
, (5.6)

Equations (4.5)–(4.14), (5.5) and (5.6) will be used in the following sections in order to calculate
the mean flow that is generated outside the dissipative layer by the resonant waves.
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5.3 Solution of generated mean shear flow outside the Alfvén
dissipative layer

To calculate the mean shear flow generated outside the dissipative layer we recall some results
from Chapter 4. We used the method of simplified matched asymptotic expansions (see, e.g.
Ballai et al., 1998b; Clack and Ballai, 2008; Clack et al., 2009b) in order to derive the equation
governing resonant Alfvén waves in the dissipative layer. The solutions in the outer region, with
the exception of v⊥ and v∥, are represented by asymptotic expansions of the form of Eq. (3.19).
We shall show that resonant Alfvén waves create a shear flow with an amplitude proportional
to ϵ1/2 outside the dissipative layer. As a consequence, we expand ṽ⊥ and ṽ∥ in the form of Eq.
(3.19), and U⊥ and U∥ in the form

U⊥ = ϵ1/2U
(0)
⊥ + ϵU

(1)
⊥ + ϵ3/2U

(2)
⊥ + . . . , U∥ = ϵ1/2U

(0)
∥ + ϵU

(1)
∥ + ϵ3/2U

(2)
∥ + . . . . (5.7)

In addition, we found that substitution of Eq. (3.19) into Eqs (4.5)–(4.14) led, in the first order
approximation, to a system of linear equations for the variables with the superscript ‘1’. When
all variables are eliminated in favour of u(1) and P(1) we arrived at Eq. (3.20). The remaining
variables are expressed in terms of u(1) and P(1) in Eqs (3.23)–(3.27). Note that in Eq. (3.23) the
velocities in the parallel and perpendicular directions relative to the ambient magnetic field (v⊥
and v∥) should be replaced by their oscillatory counterparts (ṽ⊥ and ṽ∥).

From Eqs (3.23)–(3.27), we see that the quantity ṽ
(1)
∥ is regular, while all other quantities are

singular. The quantities u(1), b
(1)
x , b

(1)
∥ , p(1) and ρ(1) behave as ln |x|, while ṽ

(1)
⊥ and b

(1)
⊥ behave

as 1/x, so they are the most singular. Carrying out calculations on Eqs (5.6) and (5.5), and utilizing
Eqs (3.20), (3.23)–(3.27), we find that in the first and second order approximations we have

d2U
(0)
⊥

dx2
=

d2U
(1)
⊥

dx2
=

d2U
(0)
∥

dx2
=

d2U
(1)
∥

dx2
= 0. (5.8)

The functions U
(0)
⊥ (x), U

(0)
∥ (x), U

(1)
⊥ (x) and U

(1)
∥ (x) are all continuous at x = 0. Since Eq. (5.8)

suggests that U
(0)
⊥ (x), U(0)

∥ (x), U(1)
⊥ (x) and U

(1)
∥ (x) are linear functions of x, we can include U

(1)
⊥ (x)

and U
(1)
∥ (x) into U

(0)
⊥ (x) and U

(0)
∥ (x) and take U

(1)
⊥ (x) = U

(1)
∥ (x) = 0, without loss of generality.

We choose a mobile coordinate system such that U
(0)
⊥ (0) = U

(0)
∥ (0) = 0, which, when used in

conjunction with Eq. (5.8), leads to

U
(0)
⊥ = V±

⊥x, U
(0)
∥ = V±

∥ x, (5.9)

where V±
⊥ and V±

∥ are constants and the superscripts ‘–’ and ‘+’ refer to x < 0 and x > 0, respec-
tively.

Continuing in the same way we can find the solutions of the subsequent higher order approx-
imations. At each step in the scheme of approximations we obtain equations with the left-hand
sides equal to the left-hand sides of the equations found in the first order approximation. The
right-hand sides of the equations are expressed in terms of variables of lower order approxima-
tions. In carrying out this process we obtain that

U
(n)
∥ = O(x−n+1), U

(n)
⊥ = O(x−n+1), n ≥ 2. (5.10)
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This implies that the mean velocity starts to behave singularly from the third order approxima-
tion. Taking into account Eqs (5.9) and (5.10) we write the expansion for the mean velocity in the
form

Uj = ϵ1/2Vjx +
∞∑

n=1

ϵ(n+2)/2V
(n)
j (x)x−n, (5.11)

where subscript ‘j’ represents either the subscript ‘⊥’ or ‘∥’ and the functions Vj(x) and V
(n)
j (x)

have finite limits at |x| → 0. The most important property of expansion (5.11) is that the term of
the lowest order approximation (proportional to ϵ1/2) is very small inside the dissipative layer,
but becomes large far away from the resonance. It is also interesting to note that the remaining
terms tend to zero far from resonance. This result is in complete agreement with the studies by,
e.g. Ruderman et al. (1997d); Ballai et al. (2000) where they found the mean flow generated by
resonant slow waves outside the dissipative layer to be proportional to ϵ1/2.

5.4 Solution of generated mean shear flow in the Alfvén dissipa-
tive layer

In this section we determine the inner expansion, which is the solution inside the dissipative layer.
The thickness of the dissipative layer is of the order of linhR−1/3, where linh is the characteristic
scale of inhomogeneity. Since we assume that R = O(ϵ−3/2) we have linhR−1/3 = O(ϵ1/2linh).
Similar to Sect. 4.3, it is convenient to introduce a stretching variable ξ = ϵ−1/2x inside the
Alfvén dissipative layer.

We can rewrite Eqs. (4.5)–(4.14) using the stretching variable, however, in the interest of being
concise, we only display the equations we use explicitly, which are the normal component of
induction and the perpendicular component of momentum

ϵ1/2 (V − w)
∂bx

∂θ
+ ϵ1/2 (B0 cos α + bz)

∂u

∂θ
+ ϵη

(
∂2bx

∂ξ2
+ ϵ

∂2bx

∂θ2

)
= 0, (5.12)

1

ρ

[
ϵ1/2 ∂P

∂θ
sin α +

bx

µ0

∂b⊥

∂ξ
+

ϵ1/2

µ0
(B0 cos α + bz)

∂b⊥

∂θ

]

= −ϵ1/2 (V − w)
∂v⊥
∂θ

+ u
∂v⊥
∂ξ

− ϵ
η1

ρ

(
∂2v⊥
∂ξ2

+ ϵ
∂2v⊥
∂θ2

)
, (5.13)

In Sect 4.3, we used the stretched versions of Eqs (4.5)–(4.14) to find the relationships between
variables in each successive order of approximation, which (for the first order of approximation)
are given by Eqs (4.17)–(4.20). Additionally, Eqs (5.12) and (5.13) are used to help derive the equa-
tions governing the mean shear flow inside the dissipative layer. Inside the Alfvén dissipative
layer, Eqs (5.5) and (5.6) for the generated mean flow are transformed to

ϵ
η1

ρ

d2U⊥

dξ2
=

〈
u

∂v⊥
∂ξ

〉
−

1

µ0

〈
bx

ρ

∂b⊥

∂ξ

〉
+ ϵ1/2

[〈
v∥

∂v⊥
∂θ

〉
cos α −

B0 cos α

µ0

〈
1

ρ

∂b⊥

∂θ

〉

−

〈
1

ρ

∂P

∂θ

〉
sin α −

cos α

µ0

〈
b∥

ρ

∂b⊥

∂θ

〉
+

sin α

µ0

〈
b⊥

ρ

∂b⊥

∂θ

〉]
, (5.14)



82 CHAPTER 5. MEAN SHEAR FLOWS GENERATED BY RESONANT ALFVÉNWAVES

ϵ
η1

ρ

d2U∥

dξ2
=

〈
u

∂v∥

∂ξ

〉
−

1

µ0

〈
bx

ρ

∂b∥

∂ξ

〉
+ ϵ1/2

[〈
v∥

∂v⊥
∂θ

〉
cos α +

〈
1

ρ

∂P

∂θ

〉
cos α

−
B0 cos α

µ0

〈
1

ρ

∂b∥

∂θ

〉
−

cos α

µ0

〈
b∥

ρ

∂b∥

∂θ

〉
+

sin α

µ0

〈
b⊥

ρ

∂b∥

∂θ

〉
−

1

µ0

dB0

dx

〈
bx

ρ

〉]
. (5.15)

In Chapter 4 we found that large variables (ṽ⊥, b⊥) inside the dissipative layer are expanded
in the form of Eq. (3.39), whereas small variables (P, p, ρ, u, ṽ∥, bx, b∥) expand in the form of Eq.
(3.19). The variables v⊥ and v∥ are expanded in series of the same form as ṽ⊥ and ṽ∥, hence we
expand U⊥ and U∥ as

U⊥ = ϵU
(2)
⊥ + . . . , U∥ = ϵU

(1)
∥ + . . . . (5.16)

We have chosen the superscripts in Eq. (5.16) in such a way that

v
(n)
⊥ = ṽ

(n)
⊥ + U

(n)
⊥ , v

(n)
∥ = ṽ

(n)
∥ + U

(n)
∥ . (5.17)

Recall that, on substituting these expansions into the stretched versions of Eqs (4.5)–(4.14) we
found a linear homogeneous system of equations for the variables with superscript ‘1’ in the first
order approximation. Then, in the second order approximation, after eliminating all variables
with superscript ‘1’ in favour of ṽ

(1)
⊥ and P(1) using Eqs (4.17)–(4.20), and satisfying the compati-

bility condition, we derived the equation governing resonant Alfvén waves inside the dissipative
layer given by Eq. (4.23).

Inserting the expansions (3.19), (3.39) and (5.16) into Eqs (5.14) and (5.15) and collecting terms
proportional to ϵ, we have

η1

ρ0a

d2U
(2)
⊥

dξ2
=

〈
u(1) ∂ṽ

(2)
⊥

∂ξ
+ u(2) ∂ṽ
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⊥
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1
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x
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⊥
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∥
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⊥
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〈
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+
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)

a

〈
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x
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⊥
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〉
, (5.18)

η1
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µ0ρ0a

〈
b

(1)
⊥

∂b
(1)
∥

∂θ

〉
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1

µ0ρ0a
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〉
. (5.19)

In deriving Eqs (5.18) and (5.19) we have utilized the fact that
〈

∂f

∂θ

〉
=

〈
f
∂f

∂θ

〉
=

〈
∂g

∂θ

〉
=

〈
g

∂g

∂θ

〉
= 0,

which follows directly from Eq. (5.1) [and Eqs (5.2) and (5.3)]. Here f is any small variable and g

is any large variable. Now we use Eqs (4.17)–(4.20) to eliminate terms on the right-hand sides of
Eqs. (5.18) and (5.19) in favour of ṽ

(1)
⊥ and P(1) to leave

η1

ρ0a

d2U
(2)
⊥

dξ2
=

〈
u(1) ∂ṽ

(2)
⊥

∂ξ
+ u(2) ∂ṽ

(1)
⊥

∂ξ

〉
−

1

µ0ρ0a

〈
b(1)

x

∂b
(2)
⊥

∂ξ
+ b(2)

x

∂b
(1)
⊥

∂ξ

〉

+
1

ρ0a

(
dρ0

dx

)

a

〈
u(1)

∂
(
ξṽ

(1)
⊥

)

∂ξ

〉
−

1

B0a

(
dB0

dx

)

a

〈
u(1)ṽ

(1)
⊥

〉
, (5.20)
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η1

ρ0a

d2U
(1)
∥

dξ2
= −

V sin α

ρ0av2
Aa

cos α

〈
ṽ

(1)
⊥

dP(1)

dθ

〉
. (5.21)

Averaging the governing equation (4.23) and substituting it into Eq. (5.21) we obtain

d2U
(1)
∥

dξ2
= −

V (η1 + ρ0aη)

η1v2
Aa

cos α

〈
ṽ

(1)
⊥

∂2ṽ
(1)
⊥

∂ξ2

〉
, (5.22)

which constitutes the equation that governs the generated mean flow inside the dissipative layer
parallel to the magnetic field lines. In order to derive the equivalent equation for the generated
mean flow perpendicular to the magnetic field lines we we note that Eqs (5.12) and (5.13) in the
second order approximation lead to

u(2) +
Vb

(2)
x

B0a cos α
=

η sin α

V

∂ṽ
(1)
⊥

∂ξ
−

ξu(1)

B0a

(
dB0

dx

)

a

. (5.23)

ρ0a

∂ṽ
(2)
⊥

∂θ
+

B0a cos α

µ0V

∂b
(2)
⊥

∂θ
= −

sin α

V

dP(1)

dθ
−

η1

V

∂2ṽ
(1)
⊥

∂ξ2
+

[
B0a

µ0v2
Aa

(
dB0

dx

)

a

−

(
dρ0

dx

)

a

]
ξ

∂ṽ
(1)
⊥

∂θ
,

(5.24)
Substituting Eq. (4.23) into Eq. (5.24) we obtain

∂ṽ
(2)
⊥

∂ξ
+

B0a cos α

µ0ρ0aV

∂b
(2)
⊥

∂ξ
=

[
η1∆a

V2(η1 + ρ0aη)
+

1

B0a

(
dB0

dx

)

a

−
1

ρ0a

(
dρ0

dx

)

a

] ∂
(
ξṽ

(1)
⊥

)

∂ξ
. (5.25)

On substitution of Eqs (5.23) and (5.25) into Eq. (5.20) we produce

η1

ρ0a

d2U
(2)
⊥

dξ2
=

η sin α

V

〈(
∂ṽ

(1)
⊥

∂ξ

)2〉
+

η1

V2(η1 + ρ0aη)

∂

∂ξ

(
∆aξ

〈
u(1)ṽ

(1)
⊥

〉)
. (5.26)

It follows directly from Eqs. (4.20) and (4.23) that

∆aξ

V2

〈
u(1)ṽ

(1)
⊥

〉
= −

sin α

ρ0aV

〈
u(1)P(1)

〉
−

(η1 + ρ0aη)

ρ0aV
u(1)

∫ 〈
∂2ṽ

(1)
⊥

∂ξ2

〉
dθ (5.27)

and 〈
P(1) ∂u(1)

∂ξ

〉
= (η1 + ρ0aη)

〈
ṽ

(1)
⊥

∂2ṽ
(1)
⊥

∂ξ2

〉
. (5.28)

Using Eq. (5.26) along with Eqs (5.27)–(5.28) we find the equation governing the generated mean
shear flow inside the dissipative layer perpendicular to the magnetic field lines is

d2U
(2)
⊥

dξ2
=

ρ0aη sin α

η1V

〈(
∂ṽ

(1)
⊥

∂ξ

)2〉
−

sin α

V

〈
ṽ

(1)
⊥

∂2ṽ
(1)
⊥

∂ξ2

〉
−

1

V

〈∫
∂3ṽ

(1)
⊥

∂ξ3
dθ

〉
. (5.29)

5.5 Connection formulae

To derive the jump in the derivative of the parallel component of the mean velocity across the
dissipative layer we remember from Eq. (5.9) that V±

∥ are constants and the superscripts ‘–’ and
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‘+’ refer to x < 0 and x > 0, respectively. This means that

V+
∥ − V−

∥ = lim
ξ→∞

dU
(1)
∥

dξ
− lim

ξ→−∞

dU
(1)
∥

dξ
= −

V(η1 + ρ0aη)

η1v2
Aa

cos α

∫∞

−∞

〈(
∂ṽ

(1)
⊥

∂ξ

)2〉
dξ. (5.30)

In a similar fashion, we find the jump in the derivative of the perpendicular component of the
mean velocity across the dissipative layer to be

V+
⊥ − V−

⊥ = lim
ξ→∞

dU
(1)
⊥

dξ
− lim

ξ→−∞

dU
(1)
⊥

dξ
=

(η1 + ρ0aη) sin α

η1V

∫∞

−∞

〈(
∂ṽ

(1)
⊥

∂ξ

)2〉
dξ. (5.31)

Outside the dissipative layer we have the following approximate equalities:

U⊥ ≃ ϵ1/2U
(0)
⊥ (x), U∥ ≃ ϵ1/2U

(0)
∥ (x). (5.32)

Let us introduce the new dimensionless variables

σa = δ−1
a x = ϵ1/2δ−1

a ξ, qa =
ϵ1/2kδa

V
ṽ

(1)
⊥ , where δa =

[
V

k|∆a|

(
η1

ρ0a

+ η

)]1/3

. (5.33)

Here δa is the width of the anisotropic Alfvén dissipative layer and k = 2π/L. Equations (5.30)
and (5.31) can be rewritten in these new variables as

[
dU∥

dx

]
= −

ρ0a |∆a| cos α

2πη1

∫L

0
dθ

∫∞

−∞

(
∂qa

∂σa

)2

dσa, (5.34)

[
dU⊥

dx

]
=

ρ0a |∆a| sin α

2πη1

∫L

0
dθ

∫∞

−∞

(
∂qa

∂σa

)2

dσa. (5.35)

These equations are implicit connection formulae and, as such, they must be solved in conjunction
with the dimensionless version of Eq. (4.23), namely,

sgn(∆a)σa
∂qa

∂θ
+ k

∂2qa

∂σ2
a

= −
k sin α

ρ0a |∆a|

dPa

dθ
, (5.36)

where the notation Pa = P(xa = 0) is introduced. We note that Eqs (5.34) and (5.35) imply that
at α = 0, π/2 the jumps are zero, which is to be expected, since at these values of α there is no
Alfvén resonance present [note that for Eq.(5.34) we have to solve the integral to discover that the
jump is zero - however Eq. (5.44) shows this explicitly].

In fact, Eqs (5.34) and (5.35) can be solved explicitly, since the governing equation (5.36) is
linear. It has been shown by, e.g. Goossens (1994); Erdélyi (1997) that the solution of the governing
equation can be found in terms of the so-called F and G functions. In order to find the solutions
to Eqs (5.34) and (5.35) we need to find ṽ

(1)
⊥ in order to obtain qa. In cartesian coordinates, this

was recently accomplished by Ruderman (2009) where he found that

ṽ⊥ =
iVP sin α

ρ0aδa|∆a|
F(σa), (5.37)

where F(σa) is given by Eq. (2.48) with r substituted with σa. Substituting Eq. (5.37) into Eqs.
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(5.34) and (5.35) leads to

[
dU∥

dx

]
= −

k2 sin2 α cos α

2πη1ρ0a |∆a|

∫L

0
P2 dθ

∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa, (5.38)

[
dU⊥

dx

]
=

k2 sin3 α

2πη1ρ0a |∆a|

∫L

0
P2 dθ

∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa. (5.39)

We can rewrite the integrals on the right-hand sides of Eqs (5.38) and (5.39) as

∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa =

∫∞

−∞
dσa

∫∞

0
φ̃eiφ̃σa−φ̃3/3 dφ̃

∫∞

0
λ̃e−iλ̃σ−λ̃3/3 dλ̃, (5.40)

where the tilde denotes the inclusion of the sgn(∆a) and differentiates them from other variables,
from this point onwards we drop the tilde notation. Here we are calculating the absolute value
of the derivative, and so we use complex conjugates. If we change the order the integration we
obtain

∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa =

∫∞

0
φe−φ3/3 dφ ×

∫∞

0
λe−λ3/3 dλ ×

∫∞

−∞
e−iσa(λ−φ) dσa. (5.41)

The third integral in Eq. (5.41) is the definition of the delta function, δ(λ − φ), so we can write Eq.
(5.41) as ∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa =

∫∞

0
φe−φ3/3 dφ ×

∫∞

0
λe−λ3/3 · 2πδ(λ − φ)dλ. (5.42)

Since the integral of the delta function is always unity, we arrive at

∫∞

−∞

∣∣∣∣
dF

dσa

∣∣∣∣
2

dσa = 2π

∫∞

0
φ2e−2φ3/3 dφ = −πe−2φ3/3

∣∣∣
∞

0
= π, (5.43)

implying that Eqs (5.38) and (5.39) reduce to

[
dU∥

dx

]
= −

k2 sin2 α cos α

2η1ρ0a |∆a|

∫L

0
P2 dθ,

[
dU⊥

dx

]
=

k2 sin3 α

2η1ρ0a |∆a|

∫L

0
P2 dθ. (5.44)

Equation (5.44) contains the explicit connection formulae for the jumps in the derivatives of the
mean shear flow across the anisotropic Alfvén dissipative layer. They are explicit because we are
considering a driven problem, and hence P is assumed to be known.

If we take α = π/4 we have the following approximation

[
dU∥

dx

]
= −

[
dU⊥

dx

]
≃ ϵ1/2V

linh
, (5.45)

and these values can be seen as jumps in vorticity. Here we have used the obvious estimates
|∆a| = O(V2/linh), P = O(ϵV2klinh) and η1 = O(ϵ3/2Vlinh). In order to find the profiles of the
components of the generated mean shear flow we need to impose boundary conditions far away
from the Alfvén dissipative layer. For example, if there are rigid walls at x = ±a where the
condition of adhesion has to be satisfied, then the components of the generated mean flow take
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the simple form

U∥ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
dU∥

dx

]
x − a

2
, x > 0,

−

[
dU∥

dx

]
x + a

2
, x < 0,

U⊥ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
dU⊥

dx

]
x − a

2
, x > 0,

−

[
dU⊥

dx

]
x + a

2
, x < 0.

(5.46)

With the estimate given by Eq. (5.45) and the simple mean flow profiles in Eq. (5.46) we can
calculate the expected mean flow generated outside the anisotropic Alfvén dissipative layer in the
solar upper chromosphere and solar corona. For example, if the incoming wave has a dimension-
less amplitude of ϵ = O(10−4), then the predicted mean shear flow is of the order of 10kms−1 in
both the upper chromosphere and corona. Here we have assumed that the characteristic scale of
inhomogeneity (linh) is 102m in the upper chromosphere and 103m in the corona. This generated
flow can be superimposed on existing flow, so it is difficult to observe. These results should be
used with caution, when applied to the solar atmosphere. We have assumed that outside the dis-
sipative layer the plasma is homogeneous and infinite, and clearly the solar atmosphere is neither,
so, since all flows are entirely governed by the boundary conditions, the flow generated may be
less than predicted or may even be stopped entirely.

5.6 Conclusions

In the present chapter we have completed the nonlinear theory of resonant Alfvén waves in
dissipative layers in a one-dimensional (1-D) planar geometry. In Chapter 4 we showed that
even though nonlinearity and dispersion are considered the equation governing resonant Alfvén
waves in the Alfvén dissipative layer is always linear (provided ϵ ≪ R−1/3). However, we ne-
glected the second manifestation of nonlinearity at resonance; the generation of mean shear flows
outside the dissipative layer. This flow is produced by the nonlinear interaction of harmonics
inside the dissipative layer and may still exist even though the governing equation inside the
dissipative layer is linear.

We have shown that outside the dissipative layer a mean flow is generated parallel to the mag-
netic surfaces. The flow has an amplitude proportional to ϵ1/2, and depends linearly on x. The
derivatives of the velocity of the generated mean flow have a nonzero jump across the dissipative
layer determined by Eq (5.44). When α = π/4 the magnitude of the jumps can be estimated as
ϵ1/2Vl−1

inh, where V is the phase speed of the incoming wave and linh is the characteristic scale of
inhomogeneity. For typical conditions in the solar upper chromosphere and corona the magni-
tude of the jumps in the derivatives of mean shear flow velocity would be of the order of 10s−1.
From this, and the simple flow profiles given by Eq. (5.46), we predict a mean flow outside the
dissipative layer (generated by resonant absorption) with an amplitude of the order of 10kms−1

in the solar upper chromosphere and corona.
The magnitude of the jumps in the derivatives of the mean flow were found to depend on

the phase speed (V), the characteristic scale of inhomogeneity (linh) and the dimensionless ampli-
tude of oscillation (ϵ) far away from the Alfvén dissipative layer. Even though simple estimations
allowed us to approximate the magnitude of the shear flows, the results in the present chapter
should be used with caution. The present analysis has been carried out for magnetic configura-
tions that are homogeneous and infinite in the direction of wave propagation outside the Alfvén
dissipative layer. This situation can only take place in laboratory devices (such as tokamaks). In
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the solar atmosphere, magnetic configurations are bounded and / or inhomogeneous in the direc-
tion of wave propagation. These additional boundary conditions may reduce (or even prevent)
the generation of mean shear flows by resonant absorption.

It is worth mentioning that when an Alfvén resonance is present there may exist a slow reso-
nance coupled to it. If this happens (and the timescales of development are comparable), both res-
onances will generate their own mean shear flows which could become superimposed. This may
enhance the flow through constructive superposition, but equally, they may interact destructively
leaving a reduced overall combined generated mean shear flow. In other words, it is possible to
see a more efficient coupled dissipative layer create more heating, but actually generate a smaller
amplitude mean shear flow compared with two separate dissipative layers.

If the boundary conditions allow the generation of mean shear flows by resonant absorption
in the solar atmosphere, we would expect to see these flows superimposed on existing large scale
motions. It is speculated that these mean shear flows (if set up) superimposed on existing bulk
motion of the plasma would produce turbulent motions and create a Kelvin–Helmholtz instability
(KHI) along the Alfvén dissipative layer. A KHI instability may already exist due to the shear ve-
locity field of Alfvén waves as was shown by Ofman and Davila (1995); Terradas et al. (2008). The
generation of mean shear flow would survive the instability due to the velocity shear and, hence,
will still contribute to the bulk motion causing larger shear, and perhaps creating a secondary in-
stability. Either way, the KHI would distort the dissipative layer, locally enhancing the dissipation
(due to enhanced transport coefficients), which in turn would produce greater amplitude mean
shear flows. This process of feedback would continue until either; (i) the wave is dissipated, or
(ii) the turbulence destroys the dissipative layer. Either way, the turbulence would allow greater
absorption and achieve heating over a greater area (here the development of turbulent eddies can
be seen as a means of heat transport).

The resonant absorption itself may not produce the heating we see in the solar corona, but we
believe it is likely that these dissipative layers are created and KHI are formed. The KHI might
be able to trigger small scale reconnection events (nanoflaring) if the mean shear flows produced
by resonant absorption become strong enough. However, further study and observations are
required before we can make more definitive investigations.
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6
Nonlinear resonant absorption of fast

magnetoacoustic waves in strongly
anisotropic and dispersive plasmas

The nonlinear theory of driven magnetohydrodynamics (MHD) waves in strongly anisotropic and disper-
sive plasmas, developed for slow resonance in Chapter 3 and Alfvén resonance in Chapter 4, is used to
study the weakly nonlinear interaction of fast magnetoacoustic (FMA) waves in a one-dimensional planar
plasma. The magnetic configuration consists of an inhomogeneous magnetic slab sandwiched between two
regions of semi-infinite homogeneous magnetic plasmas. Laterally driven FMA waves penetrate the in-
homogeneous slab interacting with the localized slow or Alfvén dissipative layer and are partly reflected,
dissipated and transmitted by this region. The nonlinearity parameter defined by Eq. (2.58) is assumed to
be small and a regular perturbation method is used to obtain analytical solutions in the anisotropic slow
dissipative layer. We find that the effect of dispersion in the slow dissipative layer is to further decrease
the coefficient of energy absorption, compared to its standard weakly nonlinear counterpart, along with the
generation of higher harmonics in the outgoing wave in addition to the fundamental one. The absorption of
external drivers at the Alfvén resonance is described within the linear MHD with great accuracy. We also,
briefly, investigate the effect of equilibrium flow on the resonant absorption of FMA waves in anisotropic
dissipative layers. The results of the present chapter were published in Physics of Plasmas (Clack and Ballai,
2009b).

No nature except an extraordinary one could ever easily formulate a theory.
(Plato 429 − 347BC)
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WAVES IN STRONGLY ANISOTROPIC AND DISPERSIVE PLASMAS
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6.1 Introduction

The problem of interacting fast magnetoacoustic (FMA) waves with different magnetic structures
is not only important in the context of astrophysics and solar physics, but also in laboratory
plasma devices. Space and laboratory plasmas are highly non-uniform and dynamical systems
and as a consequence they are a natural medium for magnetohydrodynamic (MHD) waves. As
discussed before, in the context of solar and space physics, the process of resonant coupling of
waves provides a means of extracting wave energy and converting the energy into heat by, e.g.
dissipation.

Many studies of resonant absorption have been attempted (see, e.g. Davila, 1987; Ruderman
et al., 1997c; Ballai et al., 1998a; Erdélyi, 1998; Erdélyi and Ballai, 1999; Peter and Vocks, 2003),
but considered only the sound (or slow) and Alfvén waves as excellent candidates for coronal
heating. Alfvén waves can only carry energy along the magnetic field lines and slow waves are
only able to carry 1 − 2% of energy under coronal (low plasma-β) conditions. However, FMA
waves might have an important role in explaining the coronal temperatures, as has been shown
by, e.g. C̆adez̆ et al. (1997); Csı́k et al. (1998). One of the critical features of FMA waves is their
ability to propagate across the magnetic field, a feat not matched by the slow or Alfvén waves.

Recall that in Sect. 1.3 we discussed that for all AC heating mechanisms to occur a wave has
to arrive at a region of interest. We stated that the waves, in this case FMA waves, can arrive
from the photosphere below due to magnetic shuffling. The energy flux density of FMA waves
required for significant heating is of the order of 100 Jm−2s−1 at the base of the corona. This is not
entirely inconsistent with the upper limit on acoustic waves of 10 Jm−2s−1 (see, e.g. Athay and
White, 1978), provided the magnetic field at the base is sufficiently large, e.g. > 10−3T. However,
we did discuss that it is possible for the FMA waves (along with Alfvén and slow waves) to be
produced within the corona itself, a process known as nanoflaring (or flaring, in general). The
production of waves within the corona alleviates many of the constraints on finding sufficient
energy in waves to provide the heating for the corona.

Unfortunately, there are still a few questions to be answered here. Nanoflaring, so far, has
only been observed in one study by Reale et al. (2009). The lack of observations could be due to
the nanoflares’ highly localized nature. Even if we extend the theory to readily observable events,
such as microflares, blinkers, etc., we cannot be certain of the energy requirement for heating
being met by explosive events (see, e.g. Aschwanden et al., 1999b). We, however, assume the
amount of energy required for heating is available in the magnetic energy stored by the shuffling
of the footpoints in the photosphere. Hence, the necessary supplementary heating may come from
reconnection driven, locally generated MHD waves (see, e.g. Erdélyi and Ballai, 2001). Studies by
Roussev et al. (2001a,b,c) have carried out numerical simulations, experiments and observations
of explosive events where reconnection has excited and driven FMA waves, but did not comment
on the dissipation of the waves produced.

The aim of the present chapter is to study the nonlinear (linear) resonant interaction of ex-
ternally driven FMA waves with the slow (Alfvén) dissipative layer in strongly anisotropic and
dispersive static plasmas. The governing equations and jump conditions, derived earlier in Chap-
ters 3 and 4, will be used to study the efficiency of absorption at the slow and Alfvén resonance.
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WAVES IN STRONGLY ANISOTROPIC AND DISPERSIVE PLASMAS

6.2 Governing equations and assumptions

The dynamics and absorption of the waves will be studied in a Cartesian coordinate system.
The equilibrium state is shown in Figure 6.1. The configuration consists of an inhomogeneous
magnetized plasma 0 < x < x0 (Region II) sandwiched between two semi-infinite homogeneous
magnetized plasmas x < 0 and x > x0 (labelled as Regions I and III, respectively). This model
was chosen as theoretical results earlier in the present thesis are ready to be applied in this form.
Our intention is to have a model which gives us the trend in the absorption of an incident wave
on a magnetic structure. It is obvious that real magnetic structures are far more complicated
(and far from being fully understood), however, the magnetic field has been simplified to be
unidirectional in order to make the model more transparent, such that the role of the dispersion
at the resonance and the change in the absorption can be investigated more fully, and compared
to previous studies. We took inspiration for this model from studies such as, e.g. Roberts (1981b);
Edwin and Roberts (1982); Ruderman et al. (1997c); Ballai et al. (1998a); Ballai (2000); Ruderman
(2000); Erdélyi and Ballai (2001).

The equilibrium density and pressure are denoted by ρ and p. The equilibrium magnetic field,
B, is unidirectional and lies in the yz−plane (just as in previous chapters). In what follows the
subscripts ′e ′, ′0 ′ and ′i ′ denote the equilibrium quantities in the three regions (Regions I, II,
III, respectively). The components of the equilibrium magnetic field are given in Eq (3.3) and all
equilibrium quantities are continuous at the boundaries of Region II, so they satisfy the equation
of total pressure balance

pe +
B2

e

2µ0
= p0(x) +

B2
0(x)

2µ0
= pi +

B2
i

2µ0
. (6.1)

It follows from the equation of total pressure that the density ratio between Regions I and III
satisfy the relation

ρi

ρe
=

2c2
Se

+ γv2
Ae

2c2
Si

+ γv2
Ai

, (6.2)

where the squares of the Alfvén and sound speed are given in Sect. 2.5. We have replaced the
subscript ′0 ′ with ′e ′ for Region I and ′i ′ for Region III. We consider a hot magnetized plasma
such that c2

Si
> c2

Se
, and v2

Ai
> v2

Ae
.

The objective of the present chapter is to study (i) the combined effect of nonlinearity and
dispersion on the interaction of incoming fast waves with anisotropic slow dissipative layers and (ii)
the interaction of incoming fast waves with anisotropic Alfvén dissipative layers. We, therefore, have
two different criteria to be satisfied in order that resonant absorption takes place. First of all, we
need to assume that there is no overlap between the slow and Alfvén continua, i.e. min[ωA(r)] −

max[ωC(r)] > 0. For interaction of FMA waves with the slow dissipative layer we assume that
the frequency of the incoming fast wave is within the slow continuum of the inhomogeneous
plasma, so that there is a slow resonant position at x = xc in Region II. Interactions with the
Alfvén dissipative layer leads to the assumption that the frequency of the incoming fast wave is
within the Alfvén continuum of the inhomogeneous plasma, so that there is an Alfvén resonant
point at x = xa in Region II. At the slow resonance, this leads to the inequality,

cTe <
ω

k
< cTi , (6.3)
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Figure 6.1: Illustration of the equilibrium state. Regions I (x < 0) and III (x > x0) contain a
homogeneous magnetized plasma and Region II (0 < x < x0) an inhomogeneous magnetized
plasma. The shaded strip shows the dissipative layer embracing the ideal resonant position at xa

or xc.

while at the Alfvén resonance, we have

vAe <
ω

k
< vAi . (6.4)

Here ω is the frequency of the incoming fast wave and k = (k2
x +k2

z)1/2 is the wave number. Even
though, in principle, when a slow resonance occurs in this manner an Alfvén resonance is also
present we ignore the Alfvén resonance that occurs alongside the slow resonance as this would
complicate the analysis and obscure the results associated with the slow resonance. We study the
Alfvén resonance separately to the slow resonance. We note that the Alfvén resonance would, in
simple terms, act to restrict the energy available at the slow resonance. In this way we can treat
the two resonances separately. We intend to address the issue of coupled resonances in Chapter
7, where we will show that the governing equations derived here remain the same (meaning the
work here is valid), however, the interaction of the waves between the resonant positions changes
the absorption of wave energy.

In an attempt to remove other effects from the analysis we consider the incoming fast wave to
be entirely in the xz−plane, i.e. ky = 0. In Ruderman et al. (1997c) it is suggested that aligning
the equilibrium magnetic field with the z−axis will remove the Alfvén resonance (if we consider
planar waves) from the analysis of the slow resonance, however, this is not possible nor necessary
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here. The dispersion is dependent on the angle (α) between the equilibrium magnetic field and the
z−axis , hence if α = 0 the dispersion effects disappear, and we recover the governing equation
derived by Ballai et al. (1998b).

Inequalities (6.3) and (6.4) guarantee that the slow and Alfvén resonances appears in Region
II when studying in the upper chromosphere and the solar corona, respectively. The resonant
positions, therefore, are defined mathematically as ωc = kcT (xc) cos α and ωa = kvA(xa) cos α,
which is identical to their definitions in Chapters 3 and 4. The inequalities (6.3) and (6.4) also
provides us with some information about the plasma condition. First, in conjunction with Eq.
(6.2) we obtain that

ρi

ρe
=

2c2
Se

+ γv2
Ae

2c2
Si

+ γv2
Ai

< 1. (6.5)

Hence, the plasma in region III is more rarefied than in Region I, with cTe < cTi and the plasma
in Region III is hotter than the plasma in Region I.

The dispersion relation for the impinging propagating fast waves takes the form (see, e.g.
Ballai, 2000; Erdélyi and Ballai, 2001)

ω2

k2
=

1

2

{(
v2

A + c2
S

)
+
[(

v2
A + c2

S

)2
− 4v2

Ac2
S cos2 φ

]1/2
}

, (6.6)

where φ is the angle between the direction of propagation and the background magnetic field
within the xz−plane and k = kxex + kzez. For the sake of simplicity, we denote κe as the ra-
tio kx/kz. Since the equilibrium magnetic field in the xz−plane is aligned with the z−axis, the
dispersion relation (6.6) becomes

ω2

k2
=

1

2

{
(
v2

A + c2
S

)
+

[(
v2

A + c2
S

)2
− 4

v2
Ac2

S

1 + κ2
e

]1/2
}

, (6.7)

where 1 + κ2
e = 1/ cos2 φ.

We assume that the plasma is strongly magnetized in the three regions, such that the con-
ditions ωi(e)τi(e) ≫ 1 are satisfied. Due to the strong magnetic field, transport processes are
derived from Braginskii’s stress tensor (see Sect. 2.4). As we deal with two separate types of
resonances (slow and Alfvén), we will need to choose the particular dissipative process which is
most efficient for these waves. Recall that for slow waves, it is a good approximation to retain
only the first term of Braginksii’s expression for viscosity, given by Eq. (2.29). In addition, in the
solar upper atmosphere slow waves are sensitive to thermal conduction so we have to include
L = ∇ · q in Eq. (2.7), however, as explained by Ruderman et al. (1996), we do not include ther-
mal radiation. We must also include dispersion due to Hall conduction at the slow resonance, as
shown by Appendix A. On the other hand, since Alfvén waves are transversal and incompress-
ible they are affected by the second and third components of Braginskii’s stress tensor, provided
by Eq. (2.30). Finally, Alfvén waves are efficiently damped by finite electrical conductivity, which
becomes anisotropic under coronal conditions. The parallel and perpendicular components, how-
ever, only differ by a factor of 2, so we will only consider one of them without loss of generality.
All other transport mechanisms can be neglected (see Sect. 2.4).

The dynamics of nonlinear resonant MHD waves in anisotropic and dispersive plasmas was
studied in Chapters 3 and 4. We derived the governing equations and connection formulae nec-
essary to study resonant absorption in slow / Alfvén dissipative layers. The efficiency of dissi-
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pation, when studying anisotropic slow dissipative layers, in an anisotropic plasma is given by
the (compressional) viscous Reynolds number and the Péclet number, combining to define the
compressional total Reynolds number, defined in Eq. (2.54). The efficiency of dissipation, when
studying anisotropic Alfvén dissipative layers is measured in a slightly different way. Now dissi-
pative processes are described by the shear viscous Reynolds number and the magnetic Reynolds
number, combining to define the shear total Reynolds number, provided by Eq. (2.55).

As we have stated a few times now, under chromospheric and coronal conditions R ≫ 1,
which means that dissipation is only important inside the dissipative layer. Far away from the
dissipative layer amplitudes are small, therefore we can use the linear ideal MHD equations to
describe the plasma motions far from the resonant position. These equations can be reduced to a
system of coupled first order PDE’s for the total pressure perturbation and the normal component
of the velocity shown in Eq. (3.20). Inside the thin dissipative layers (where the dynamics is
described by the nonlinear and dissipative MHD equations) embracing the ideal resonant surfaces
(x = xc or x = xa) we must use the governing equations derived in Chapters 3 and 4. The
characteristic thickness of the anisotropic slow dissipative layer, δc, is given by Eq. (3.55), while
the characteristic thickness of the anisotropic Alfvén dissipative layer, δa, is written in Eq. (5.33).

Here we need to make a note: the two nonlinearity parameters defined by Eqs (2.58) and
(2.57) are different not only in their form but also in the values the total Reynolds numbers take.
In the case of slow waves, the compressional total Reynolds number that corresponds to a char-
acteristic length of 200Mm, a speed of 200kms−1, a density of 10−13kgm−3 and a compressional
viscosity coefficient of 5 × 10−2kgm−1s−1 is Rc ≈ 80. Alfvén waves are efficiently damped by
shear viscosity which is given by the second and third coefficients of the Bragisnkii’s tensor. Since
η1 = η0/(ωiτi)2 and under coronal conditions ωiτi is of the order of 105, we obtain that the coef-
ficient of shear viscosity is about 10 orders of magnitude smaller than the coefficient of compres-
sional viscosity. Now, using the characteristic speed of 1000kms−1, the shear total Reynolds num-
ber used in calculating the nonlinear parameter in the case of Alfvén nonlinearity is Ra ≈ 4×1012.

The dimensionless governing equation inside the anisotropic slow dissipative layer is con-
tained in Eq. (3.60). In the governing equation, the first term appears due to the inhomogeneity
in the cusp speed, the second term describes the nonlinearity of waves, the third term stands for
the dissipative effects while the last term on the left-hand side describes the nonlinear dispersive
effects generated after taking into account Hall currents. The term on the right-hand side can be
considered as a driver. We also note that qc(σc, θ) is the dimensionless component of velocity
parallel to the equilibrium magnetic field. The dimensionless equation governing wave dynam-
ics in the anisotropic Alfvén dissipative layer is provided by Eq. (5.36). Here qa(σa, θ) is the
dimensionless component of velocity perpendicular to the equilibrium magnetic field.

When studying resonant MHD waves, we are generally not interested in the solution inside
the dissipative layer and can consider the dissipative layer as a surface of discontinuity. Instead,
we solve the system (3.20) and match the solutions at the boundaries of the discontinuity using
connection formulae. These connection formulae determine the jumps in u and P across the dis-
sipative layer. In the context of solar plasmas, it was shown that the first connection formula, for
both the slow and Alfvén resonance, is [P] = 0, where the square brackets denote the jump across
the dissipative layer. The jump condition for the total pressure will take a more complicated form
for a more complex magnetic configuration (e.g. twist). The second connection formula for slow
resonance can only be written in the implicit form of Eq. (3.65). In an attempt to follow the same
procedure utilized for finding solutions at the slow resonance we can write the jump in the nor-
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mal component of velocity for the Alfvén resonance in an implicit form. For the sake of brevity,
we do not show the derivation here, but it follows the procedure to find the jump in the normal
component of velocity completed in Sect. 3.4. This jump is given by

[ua] =
V sin α

k
P

∫∞

−∞

∂qa

∂θ
dσa. (6.8)

Finally, we should note some critical assumption we make to allow analytical progress. From
the very beginning we must assume that the nonlinearity parameter in Eq. (2.58) is small so
that regular perturbation theory can be applied at the slow resonance. We also assume that the
inhomogeneous region is thin in comparison with the wavelength of the impinging wave, i.e.
kx0 ≪ 1. Ruderman (2000) investigated the absorption of sound waves at the slow dissipative
layer in the limit of strong nonlinearity. In his analysis nonlinearity dominated dissipation in
the resonant layer which embraces the dissipative layer. He concluded that nonlinearity decreases
absorption in the long wavelength approximation, but increases it at intermediate values of kx0,
however, the increase is never more than 20%. To the best of our knowledge, at present, we
cannot solve the governing equation (3.60) in the limit of strong nonlinearity due to the nonlinear
dispersive term, therefore we restrict our analysis to the weak nonlinear limit. We mention that
no such assumptions are needed for studying the Alfvén dissipative layer since the governing
equation (5.36) is linear.

6.3 Solutions outside the dissipative layer

In what follows we derive a solution for the system (3.20) in Regions I, II and III. In Region II we
only find the solution outside the dissipative layers. Section 6.4 is devoted to finding a solution
to Eq. (3.60) inside the anisotropic slow dissipative layer and Sect. 6.5 is used to find a solution
to Eq. (5.36) inside the anisotropic Alfvén dissipative layer. Outside the dissipative layers the
solutions take identical forms because they are governed by the same equation.

6.3.1 Region I

The solution of Eq. (3.20) in Region I is given in the form of an incoming and outgoing fast wave
of the form

P = ϵ {pe cos [k (θ + κex)] + A cos [k (θ − κex)]} , (6.9)

u =
ϵκeV

ρe

(
V2 − v2

Ae
cos2 α

) {pe cos [k (θ + κex)] − A cos [k (θ − κex)]} , (6.10)

where ϵ ≪ 1 is the dimensionless amplitude of perturbation far from the dissipative layer. The
frequency of the incoming wave is given by Eq. (6.7) and must lie within the slow or Alfvén
continuum depending on which dissipative layer we are studying. The first term in the braces in
Eqs (6.9) and (6.10) describes the incoming wave, while the second term describes the outgoing
wave which will be obtained in Sect. 6.4 for anisotropic slow dissipative layers and in Sect. 6.5
for anisotropic Alfvén dissipative layers.
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6.3.2 Region II

In Region II, the equation for the total pressure, P, is obtained by eliminating u from the system
(3.20),

F̃
∂

∂x

[
1

ρ0

(
V2 − v2

A cos2 α
) ∂P

∂x

]
=

∂2P

∂θ2
, (6.11)

where
F̃(x) =

ρ0(x)
[
v2

A(x) + c2
S(x)

] [
V2 − v2

A(x) cos2 α
] [

V2 − c2
T (x) cos2 α

]

V4 − V2
[
v2

A(x) + c2
S(x)

]
+ v2

A(x)c2
S(x) cos2 α

.

Since we have assumed that kx0 ≪ 1, the ratio of the right-hand side and the left-hand side is of
the order of k2x2

0. It follows that

∂P

∂x
= ρ0

(
V2 − v2

A cos2 α
)
f(θ) + O(k2x2

0), (6.12)

where the function f(θ) is determined by the second equation of (3.20) and the boundary condi-
tions at x = 0. Equation (6.12) yields

P = P̃(θ) + f(θ)

∫x

0
ρ0

[
V2 − v2

A cos2 α
]
dx + O(k2x2

0). (6.13)

The function P̃(θ) has to be determined by the boundary conditions at x = 0. It can be shown that,
because [P] = 0, the functions f(θ) and P̃(θ) take the same values throughout Region II. Noting
that the second term in Eq. (6.13) is of the order of kx0 we can express P in a simplified form as

P = P̃(θ) + (kx0)P ′(x, θ) + O(k2x2
0). (6.14)

6.3.3 Region III

To derive the governing equation for Region III we eliminate the normal component of the veloc-
ity from the system (3.20) to arrive at

∂2P

∂x2
+ κ2

i
∂2P

∂θ2
= 0, (6.15)

where κ2
i is defined as

κ2
i = −

V4 − V2
(
c2

Si
+ v2

Ai

)
+ c2

Si
v2

Ai
cos2 α

(
c2

Si
+ v2

Ai

) (
V2 − c2

Ti
cos2 α

) . (6.16)

Since, for anisotropic slow dissipative layers, V < cTi cos α, it follows that κ2
i > 0. It also follows

that for anisotropic Alfvén dissipative layers κ2
i > 0 because V > cTi cos α > vAe cos α. Therefore,

Eq. (6.15) is an elliptical differential equation and the wave motion is evanescent in Region III.
In reality, if κ2

i < 0, there could be wave leakage. The existence of wave leakage depends on the
profile of the slow and Alfvén speeds in the inhomogeneous region (Region II). For simplicity,
we have assumed that the slow and Alfvén resonances take place at a single location (obviously
different for the two resonances), which means the profiles of the slow and Alfvén speeds are
monotonically increasing inside Region II. Should we have a more complex model, the possibility
of wave leakage would need to be taken into account.
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6.4 Weak nonlinear solution inside the slow dissipative layer

Since we are not able to solve the governing equation (3.60) inside the anisotropic slow dissipative
layer analytically, we consider the limit of weak nonlinearity (N2

c ≪ 1). In accordance with this
assumption we rewrite the governing equation (3.60) and the jump condition (3.65) as

σc
∂qc

∂θ
+ ϵ−1ζ

(
Λ

Ψ

)
qc

∂qc

∂θ
− ϵ−1ζ

∂qc

∂σc

∂qc

∂θ
− k−1 ∂2qc

∂θ2
= −

V4

ρ0cv4
Ac

|∆c|x0

dPc

dθ
, (6.17)

[uc] = −
Vx0

cos2 α
P

∫∞

−∞

∂qc

∂θ
dσc, (6.18)

where
qc =

qc

kx0
, ζ =

kx0D2
dΨ

R4
c

, D2
d = ϵR4

c = R2
c N2

c . (6.19)

Note that ζ is of the order of ϵR2
c , the ratio (Λ/Ψ) is of the order of unity and qc is of the order of

ϵ. In what follows we drop the bar notation on the dimensionless variable qc.
We proceed by using a regular perturbation method and look for solutions in the form

f = ϵ

∞∑

n=1

ζn−1fn, (6.20)

where f represents any of the quantities P, u and q.

6.4.1 First order approximation

In the first order approximation, from Eq. (6.17), we obtain

σ
∂q1c

∂θ
− k−1 ∂2q1c

∂θ2
= −

V4

ρ0cv4
Ac

|∆c|x0

dP1c

dθ
. (6.21)

Since the total pressure, P, is continuous throughout the dissipative layer and is periodical with
respect to θ, we look for a solution in the form

g1 = ℜ(ĝ1eikθ), (6.22)

where g1 represents P1, u1 and q1c and ℜ indicates the real part of a quantity.
In Region I the solutions for the pressure and velocity exactly recover the results found in

linear theory, i.e.

P̂1 = peeikκex + A1ce−ikκex, û1 =
κeV

(
peeikκex − A1ce−ikκex

)

ρe

(
V2 − v2

Ae
cos2 α

) , (6.23)

where A1c (and subsequent values of Aic) is the amplitude of the outgoing wave. The first terms
of the right-hand side of P̂1 and û1 represent the incoming wave, while the second terms are the
outgoing (reflected) wave. The continuity of the total pressure perturbation at x = 0 and x = x0

in combination with Eq. (6.14) yields P̂1, in Region II, as

P̂1 = pe + A1c + (kx0)ĥ1, (6.24)
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where ĥn = ĥn(x) = P̂ ′
n(x) − P̂ ′

n(0), n ≥ 1. The solution in Region III is obtained by using Eqs
(3.20), (6.15) and (6.24) with the continuity conditions at x = x0. The solution takes the form

P̂1 =
{
pe + A1c + (kx0)ĥ1

}
e−kκi(x−x0), û1 =

iκiV
{
pe + A1c + (kx0)ĥ1

}

ρi

(
V2 − v2

Ai
cos2 α

) e−kκi(x−x0). (6.25)

Utilizing the fact that û1 is continuous at x = 0 and x = x0, and employing Eqs (3.20) and (6.24)
we find that the jump in the normal component of velocity across the dissipative layer is

[û1] =
iκiV(pe + A1c)

ρi

(
V2 − v2

Ai
cos2 α

) −
κeV(pe − A1c)

ρe

(
V2 − v2

Ae
cos2 α

)

− ikV (pe + A1c) P

∫x0

0

1

F̃(x)
dx − ikV(kx0)P

∫x0

0

ĥ1(x)

F̃(x)
dx, (6.26)

where the expression of F̃(x) is given by Eq. (3.21).

Solving Eq. (6.21) reveals q̂1c to be

q̂1c = −
V4 (pe + A1c) {1 + O(kx0)}

ρ0cv2
Ac

|∆c|x0 (σc − i)
. (6.27)

Substitution of Eq. (6.27) into Eq. (6.18) leads to another definition of the jump in the normal
component of velocity across the anisotropic slow dissipative layer, namely,

[û1c ] =
−πkV5 (pe + A1c) {1 + O(kx0)}

ρ0cv4
Ac

|∆c| cos2 α
. (6.28)

Comparing Eqs. (6.26) and (6.28) we obtain that

A1c = −pe
τc − µ + iυ

τc + µ + iυ
+ O(k2x2

0), (6.29)

where
τc =

πkV5

ρ0cv4
Ac

|∆c| cos2 α
, µ =

κeV

ρe

(
V2 − v2

Ae
cos2 α

) ,

υ =
κiV

ρi

(
V2 − v2

Ai
cos2 α

) − kVP

∫x0

0

1

F̃(x)
dx. (6.30)

When deriving Eq. (6.29) we have employed the estimate that

kP

∫x0

0

ĥn(x)

F̃(x)
dx = O(kx0). (6.31)

The quantity A1c is complex which means that the outgoing (reflected) wave has a phase alter-
ation compared with the incoming wave. The true amplitude of the outgoing wave is given by
Ã1c = (A2

1c(r) +A2
1c(im))

1/2 (where the subscripts ′r ′ and ′im ′ mean the real and imaginary parts,
respectively). The Fourier analysis allows A1c to be complex. In general, a complex value of Anc

means the true amplitude of the outgoing harmonic is defined as above and a phase of the out-
going wave is shifted by tan−1(A2

nc(im)/A
2
nc(r)). This definition of Anc applies to all subsequent

orders of approximation.

In the studies by Ruderman et al. (1997c) and Ballai et al. (1998a) a similar procedure was
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carried out. Our results are similar with theirs if we consider Be = 0 and α = 0. This conclusion
is not surprising because the first order approximation with respect to ζ coincides with linear
theory. In addition, dispersion due to the Hall effect at the slow resonance does not alter linear
theory, since dispersion effects appear as a nonlinear term in the governing equation.

6.4.2 Second order approximation

Nonlinear effects start to be important from the second order approximation onwards, but they
are always due to the nonlinear combination of lower order harmonics. In this order of approxi-
mation Eq. (6.17) is reduced to

σc
∂q2c

∂θ
− k−1 ∂2q2c

∂θ2
= −

V4

ρ0cv4
Ac

|∆c|x0

dP2c

dθ
− q1c

∂q1c

∂θ
+

∂q1c

∂σc

∂q1c

∂θ
. (6.32)

Taking advantage of the form of the first order approximation terms enables us to rewrite the
second term on the right-hand side of this equation as

q1c

∂q1c

∂θ
= ℜ

(
ik

2
q̂2

1c
e2ikθ

)
. (6.33)

Since the nonlinear terms are proportional to ℜ
(
e2ikθ

)
, it is appropriate to seek a solution of the

form
g2 = ℜ

(
ĝ2e2ikθ

)
, (6.34)

where g2 represents any of the functions P2, u2 and q2c .
Using the same techniques as in the first order approximation, it is straightforward to find the

jump in the normal component of velocity in Region II as

[û2c ] =
iκiVA2c

ρi

(
V2 − v2

Ai
cos2 α

) +
κeVA2c

ρe

(
V2 − v2

Ae
cos2 α

)

− 2ikVA2cP

∫x0

0

1

F̃(x)
dx − 2ikV(kx0)P

∫x0

0

ĥ2(x)

F̃(x)
dx. (6.35)

Using Eqs (6.27) and (6.33) we can solve Eq.(6.32) to obtain

q̂2c = −
1

σc − 2i

[
V4A2c

ρ0cv4
Ac

|∆c|x0
+

V8 (pe + A1c)2 (1 + 4Ω2)

4ρ2
0c

v8
Ac

|∆c|2x2
0(σc − i)2

]
, (6.36)

where Ω2 = 1/(σC − i) is the additional factor due to the nonlinear dispersion (as are all subse-
quent values of Ωi, i > 2). We substitute the expression for q̂2c into Eq. (6.18) to find

[û2c ] = −
2πkV5A2c

ρ0cv4
Ac

|∆c| cos2 α
, (6.37)

where the terms of the order of k2x2
0 are not indicated. To calculate A2c we compare the jump

in the normal component of velocity across the anisotropic slow dissipative layer defined by Eqs
(6.35) and (6.37). This leads to

A2c = O(k2x2
0). (6.38)

This result implies that all quantities in the second order approximation (with respect to ζ) are
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zero outside the dissipative layer up to an accuracy of O(kx0). With this restriction the outgoing
wave remains monochromatic in the second order approximation. This result coincides with the
results of Ruderman et al. (1997c), Ballai et al. (1998a),Erdélyi and Ballai (2001) and Ruderman
(2000) [which is especially surprising because in this paper nonlinearity is strong].

6.4.3 Third order approximation

The third order approximation with respect to ζ is governed by

σc
∂q3c

∂θ
− k−1 ∂2q3c

∂θ2
= −

V4

ρ0cv4
Ac

|∆c|x0

dP3c

dθ
−

∂ (q1cq2c)

∂θ
+

∂q1c

∂σc

∂q2c

∂θ
+

∂q2c

∂σc

∂q1c

∂θ
. (6.39)

Taking into account the form of the solutions in the previous two orders of approximation we can
rewrite the second term on the right-hand side of Eq. (6.39) as

∂ (q1cq2c)

∂θ
=

k

2
ℜ
(
3iq̂1c q̂2ce3ikθ + iq̂∗

1c
q̂2ceikθ

)
, (6.40)

where qnc = ℜ
(
q̂nceinkθ + q̂∗

nc
e−inkθ

)
and the asterisk denotes a complex conjugate. This

result inspires us to seek solutions in the third order approximation in the form

g3 = ℜ
(
ĝ31eikθ + ĝ33e3ikθ

)
, (6.41)

where g3 represents P3, u3 and q3c .

In Region I we obtain the solutions

P̂31 = A31ce−ikκex, û31 = −
κeVA31ce−ikκex

ρe

(
V2 − v2

Ae
cos2 α

) , (6.42)

P̂33 = A33ce−3ikκex, û33 = −
κeVA33ce−3ikκex

ρe

(
V2 − v2

Ae
cos2 α

) . (6.43)

Using the same method as in the first and second order approximations we find the amplitudes
of total pressure perturbations to be

P̂31 = A31c + (kx0)ĥ31, P̂33 = A33c + (kx0)ĥ33. (6.44)

As a result, the normal velocities and pressure perturbations in region III, take the form

P̂31 =
{
A31c + (kx0)ĥ31

}
e−kκi(x−x0), û31 =

iκiV
{
A31c + (kx0)ĥ31

}

ρi

(
V2 − v2

Ai
cos2 α

) e−kκi(x−x0), (6.45)

P̂33 =
{
A33c + (kx0)ĥ33

}
e−3kκi(x−x0), û33 =

iκiV
{
A33c + (kx0)ĥ33

}

ρi

(
V2 − v2

Ai
cos2 α

) e−3kκi(x−x0). (6.46)

In a similar manner as the first and second order approximations, we find that the jumps in the
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normal component of velocity across the anisotropic slow dissipative layer to be

[û31c ] =
iκiVA31c

ρi

(
V2 − v2

Ai
cos2 α

) +
κeVA31c

ρe

(
V2 − v2

Ae
cos2 α

)

− ikVA31cP

∫x0

0

1

F̃(x)
dx − ikV(kx0)P

∫x0

0

ĥ31(x)

F̃(x)
dx, (6.47)

[û33c ] =
iκiVA33c

ρi

(
V2 − v2

Ai
cos2 α

) +
κeVA33c

ρe

(
V2 − v2

Ae
cos2 α

)

− 3ikVA33cP

∫x0

0

1

F̃(x)
dx − 3ikV(kx0)P

∫x0

0

ĥ33(x)

F̃(x)
dx. (6.48)

To find q̂31c and q̂33c we must exploit Eqs (6.27), (6.36) and (6.40) to solve Eq. (6.39). The
calculation is analogous to the first and second order approximation calculations and we arrive
at the solutions

q̂31c = −
V4A31c

ρ0cv4
Ac

|∆c|x0 (σc − i)
−

V12 (pe + A1c) |pe + A1c |2 (1 + 2Ω31)

8ρ3
0c

v12
Ac

|∆c|3x3
0 (σc − i)2 (σc − 2i) (σ2

c + 1)
, (6.49)

q̂33c = −
V4A33c

ρ0cv4
Ac

|∆c|x0 (σc − 3i)
−

V12 (pe + A1c)3 (3 + 2Ω33)

24ρ3
0c

v12
Ac

|∆c|3x3
0 (σc − i)3 (σc − 2i) (σc − 3i)

, (6.50)

where Ω31 and Ω33 are given by

Ω31 = Ω2
σ3

c − (8 + 7i)σ2
c − (11 + 12i)σc − (44 − 5i)

(σc − 2i) (σ2
c + 1)

,

Ω33 = Ω2
2
11σ2

c + (24 − 32i)σc − (21 + 44i)

(σc − 2i)
.

We substitute these expressions for q̂31c and q̂33c to find a second definition for the jump in the
normal component of velocity across the dissipative layer (up to an accuracy of kx0)

[û31c ] = −
πkV5A31c

ρ0cv4
Ac

|∆c| cos2 α
+

πkV13 (pe + A1c) |pe + A1c |2 (27 − 8i)

96ρ3
0c

v12
Ac

|∆c|3x2
0 cos2 α

, (6.51)

[û33c ] = −
3kV5A33c

ρ0cv4
Ac

|∆c|x0
. (6.52)

Similar to the first two orders of approximation, we can compare Eqs (6.47) and (6.48) with (6.51)
and (6.52), respectively, to find the coefficients A31c and A33c

A31c =
p3

eτ3
cµ3 (27 − 8i) cos4 α

12π2V2k2x2
0 (µ + iυ)2 (µ2 + υ2)

, A33c = O(k2x2
0). (6.53)

When calculating A31c we have used the estimates

τc = O(kx0), kVP

∫x0

0

1

F̃(x)
dx = O(kx0),

and retain only the terms of lowest order with respect to kx0, as we have assumed that kx0 ≪ 1.
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Equation (6.53) illustrates that with an accuracy of up to O(kx0) the outgoing (reflected) wave re-
mains monochromatic in the third order of approximation (with respect to ζ). Nevertheless, there
is a slight alteration to the amplitude of the fundamental harmonic of the outgoing wave from
A1c to A1c + ζ2A31c . These results coincide, qualitatively, with the findings of, e.g. Ruderman
et al. (1997c); Ballai et al. (1998a); Erdélyi and Ballai (2001), however, A31c is quantitatively larger
than that of previous studies and has an imaginary component. This implies that the amplitude
of the harmonic is greater and the phase of the correction is changed when compared with those
studies. The expression for A31c , Eq. (6.53), is different to the ones they obtained because of the
inclusion of dispersion through the Hall current.

6.4.4 Higher order approximations

In the fourth order of approximation the outgoing (reflected) wave becomes non-monochromatic.
This means the energy from this order of approximation no longer contribute to the fundamental
harmonic, but to a higher one. In the fourth order approximation Eq. (6.17) gives

σc
∂q4c

∂θ
− k−1 ∂2q4c

∂θ2
= −

V4

ρ0cv4
Ac

|∆c|x0

dP4c

dθ
+

∂q2c

∂σc

∂q2c

∂θ

−
∂

∂θ

(
q1cq3c +

1

2
q2

2c

)
+

∂q1c

∂σc

∂q3c

∂θ
+

∂q3c

∂σc

∂q1c

∂θ
. (6.54)

We can rewrite the third term on the right-hand side of Eq. (6.54) using our knowledge about the
first three orders of approximation, so

∂

∂θ

(
q1cq3c +

1

2
q2

2c

)
= kℜ

{
i
(
q̂1c q̂31c + q̂∗

1c
q̂33c

)
e2ikθ + i

(
2q̂1c q̂33c + q̂2

2c

)
e4ikθ

}
. (6.55)

Equation (6.55) contains terms proportional to e2ikθ and e4ikθ, so we can anticipate the solution
to Eq. (6.54) to be of the form

g4 = ℜ
(
ĝ42e2ikθ + ĝ44e4ikθ

)
, (6.56)

where g4 represents P4, u4 and q4c . We calculate the fourth order approximation to demonstrate
that nonlinearity and dispersion in the anisotropic slow dissipative layer generates overtones in
the outgoing (reflected) fast wave. For brevity, we shall only derive the terms proportional to
e2ikθ, but for completeness we note that it can be shown that terms proportional to e4ikθ are only
present in the solution inside the dissipative layer.

Using the continuity conditions at x = 0 and x = x0 we find the jump in the normal component
of velocity across the dissipative layer to be

[û42c ] =
iκiVA42c

ρi

(
V2 − v2

Ai
cos2 α

) +
κeVA42c

ρe

(
V2 − v2

Ae
cos2 α

)

− 2ikVA42cP

∫x0

0

1

F̃(x)
dx − 2ikV(kx0)P

∫x0

0

ĥ2(x)

F̃(x)
dx. (6.57)

It is straightforward, but longwinded, to derive q̂42c , so we skip all intermediate steps and give
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the result

q̂42c =
−1

σc − 2i

{
V4A42c

ρ0cv4
Ac

|∆c|x0
+

V8 (pe + A1c)A31c (1 + Ω2)

2ρ0cv8
Ac

|∆c|2x2
0(σc − i)2

+
V16 (pe + A1c)2 |pe + A1c |2 (12 − Ω42)

96ρ4
0c

v16
Ac

|∆c|4x4
0(σc − i)3(σc − 3i) (σ2

c + 1)

}
, (6.58)

with Ω42 = f(σc), where f(σc) → 0 as σc → ∞, is the contribution due to the Hall effect. As Ω42

is messy, longwinded and not essential for forthcoming calculations, its exact form is not given
here. The substitution of q̂42c into Eq. (6.18) yields

[û42c ] = −
2πkV5A42c

ρ0cv4
Ac

|∆| cos2 α
+ 0.082 × πkV17(pe + A1c)2|pe + A1c |2

ρ4
0c

v16
Ac

|∆c|4x3
0 cos2 α

, (6.59)

Comparing Eqs. (6.57) and (6.59) we obtain that

A42c = 1.279 × p4
eτ4

cµ4 cos6 α

π3V3k3x3
0 (µ + iυ)3 (µ2 + υ2)

. (6.60)

Here we have used the same estimations that were utilized for calculating A31c in the third order
approximation and retain only the largest order terms with respect to kx0. It is clear from this re-
sult that the outgoing wave becomes non-monochromatic in the fourth order approximation. We
can also observe that the second harmonic appears in addition to the fundamental mode. This
result parallels the results obtained by, e.g. Ruderman et al. (1997c); Ballai et al. (1998a). However,
Eq. (6.60) shows that the phase is inverted and the amplitude of the second harmonic is approxi-
mately 30 times greater than theirs due to the presence of the Hall effect. Remember, though, that
this amplitude is multiplied by a very small term, ζ3, which means the overall correction is very
small.

Continuing calculations to even higher order approximations it can be shown that the higher
order harmonics (third, fourth, etc.) are generated in the outgoing (reflected) fast wave. The
pressure perturbation of the outgoing wave can be written as

P ′ = ϵℜ

{ ∞∑

n=1

Anceink(θ−κex)

}
. (6.61)

The second harmonic only appears in the outgoing wave in the fourth order approximation,
whereas, higher harmonics appear in higher orders of approximation. This implies that the esti-
mate Anc = O(ζ3), n ≥ 2 is valid.

6.5 Solution inside the Alfvén dissipative layer

We can find the jump in the normal component of velocity at the Alfvén resonance explicitly,
however, in an attempt to follow the procedure in the Sect. 6.4 (and to verify the theory), we
proceed to use the implicit form of the jump conditions. As the governing equation (5.36) is linear
we only need to calculate one order of approximation.

Although the Alfvén resonant position is at x = xa, compared with x = xc for the slow
resonant position, we can use some of the same formulae as in Sect. 6.4. First, we look for a
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solution in the form of g1 = ℜ(ĝ1eikθ). In Region I, we use Eq. (6.23) to represent the pressure and
normal component of velocity perturbations. For Region II, due to the first connection formula,
[P] = 0, we can write the pressure perturbation as Eq. (6.24). We also find that Eq. (6.25) can be
used to represent the pressure and normal component of velocity perturbations in Region III. The
fact we can employ the same equations (as in slow resonance) in the three regions leads to one
of the definitions of the jump in the normal component of velocity over the anisotropic Alfvén
dissipative layer being defined as Eq. (6.26). It should come as no surprise that this definition
of the jump across the anisotropic Alfvén dissipative layer coincides with the jump across the
anisotropic slow dissipative layer in the first order approximation. We are using linear theory
to obtain both expressions and are not looking inside the, respective, dissipative layers’, so the
forms should be identical.

To find q̂a, so that we find the other definition of the jump in ua, requires a different approach
to the one used in the Sect. 6.4. After Fourier analyzing Eq. (5.36), we are left with

iσq̂a −
d2q̂a

dσ2
a

=
ik sin α

ρ0a |∆a|
Pa. (6.62)

To solve Eq. (6.62) we introduce the Fourier transform with respect to σa:

F [f(σa)] =

∫∞

−∞
f(σa)e−iσar dσa. (6.63)

Then from Eq. (6.62) we have

dF[q̂a]

dr
− r2F[q̂a] = −

2πik sin α (pe + Aa)

ρ0a |∆a|
δ(r), (6.64)

where δ(r) is the delta-function. We find that the solution to Eq. (6.64) that is bounded for |r| → ∞
is

F[q̂a] =
2iπk sin α(pe + Aa)

ρ0a |∆a|
H(−r)er3/3. (6.65)

Here H(r) denotes the Heaviside function. It was shown by Ruderman et al. (1997c) that

P

∫∞

−∞
f(σa) dσa =

1

2

(
lim

r→+0
F[f] + lim

r→−0
F[f]

)
. (6.66)

With the aid of Eqs. (6.8), (6.65) and (6.66) we find that

[ûa] = −
πkV(pe + Aa) sin2 α

ρ0a |∆a|
. (6.67)

Comparing Eqs. (6.26) and (6.67) we derive that

Aa = −pe
τa − µ + iυ

τa + µ + iυ
+ O(k2x2

0), (6.68)

where
τa =

πkV sin2 α

ρ0a |∆a|
, (6.69)

and µ and υ have their forms given by Eq. (6.30). However, their values are different for the two
resonances.
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6.6 Coefficient of wave energy absorption

The coefficient of wave absorption is defined as

Γ =
Πin − Πout

Πin
, (6.70)

where Πin and Πout are the normal components of the energy fluxes, averaged over a period, of
the incoming and outgoing waves, respectively. It is straightforward to obtain that

Γ = 1 −
1

p2
e

∞∑

n=1

|An|2 ≈ ΓL + ζ2ΓND, (6.71)

where ΓL is the linear coefficient of wave absorption and ΓND is the nonlinear and dispersive
correction. Note that ΓND is multiplied by the small factor ζ2 which means that this term will
provide small corrections to linear results (a normal result, bearing in mind that we are dealing
with weakly nonlinear waves).

Carrying out a series of simple calculations we find at the slow resonance, in agreement with
linear theory, that

ΓLc =
4τcµ

µ2 + υ2
+ O(k2x2

0). (6.72)

The coefficient ΓND is defined as
ΓND = −

2

p2
e

ℜ {A∗
1A31} , (6.73)

which can be rewritten using Eqs (6.29) and (6.53) as

ΓNDc = −
27p2

eτ3
cµ3 cos4 α

6π2V2k2x2
0 (µ2 + υ2)

2
+ O(k2x2

0). (6.74)

Both ΓLc and ΓNDc are of the order of kx0. This result is qualitatively the same as Ruderman et al.
(1997c); Ballai et al. (1998a) results, however, the nonlinear correction is different. In fact, it is 27

times larger due to the Hall current having a dominant effect around the resonance. Moreover, the
dispersion in the anisotropic slow dissipative layer causes a further reduction in the coefficient
of energy absorption, in comparison to the nonlinear regime alone. We calculate the jump in the
normal component of velocity across the anisotropic slow dissipative layer

[uc] = −2peτcµ

{[
1 − ζ2 peτ2

cµ2 cos4 α

24π2k2x2
0 (µ2 + υ2)

]
ℜ

(
eikθ

µ + iυ

)

−ζ2 peτ2
cµ2 cos4 α

24π2k2x2
0 (µ2 + υ2)

ℜ

(
(26 − 8i)eikθ

µ + iυ

)}
, (6.75)

This result shows that nonlinearity and dispersion indeed reduces the absolute value of the ve-
locity jump, reflecting the decrease in energy absorption.

At the Alfvén resonance dynamics can be described within the linear framework. Hence,
using Eqs (6.68) and (6.71) we obtain that

Γa =
4τaµ

(τa + µ)2 + υ2
. (6.76)
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Finally, we can calculate the jump in the normal component of velocity across the anisotropic
Alfvén dissipative layer

[ua] = −2peτaµℜ

(
eikθ

τa + µ + iυ

)
. (6.77)

In Chapter 7 we shall numerically analyze the coefficient of wave energy absorption at both the
slow and Alfvén resonances.

6.7 Effect of Equilibrium Flows
Satellite observations show that the solar plasma is characterized by a high degree of dynamics.
The plasma is moving on a wide range of time scales. In order to have a more accurate description
of wave heating in the solar atmosphere the observed large scale motions should be included. We
discuss, briefly, the effect an equilibrium background motion has on the theory. In what follows,
we illustrate the alterations in the theory of resonant heating when either a simple homogeneous or
inhomogeneous flow is present.

Hollweg (1990) showed that, for an incompressible linear plasma in planar geometry, the
damping or excitation of surface waves can be strongly influenced by an equilibrium shear flow.
Erdélyi (1998) studied the effect of bulk motion on resonant Alfvén waves in coronal loops and
found that a steady state can either efficiently enhance or decrease the wave energy dissipation
depending on the relative direction of the bulk and wave motions. The absorption of FMA waves
in the presence of a field-aligned equilibrium flow in the linear regime was investigated by Csı́k
et al. (1998) and they also found a smooth variation of the wave energy absorption coefficient
relative to the equilibrium flow. The effect of an equilibrium flow on nonlinear resonant MHD
waves in isotropic plasmas was studied by Ballai and Erdélyi (1998). The generalized connection
formulae and modified solutions due to shear equilibrium flows were determined.

Let us consider an equilibrium flow in an anisotropic and dispersive plasma. Let us introduce
the Doppler shifted phase velocity of the waves;

V = V − v0 cos α, (6.78)

where v0 is the equilibrium flow speed and for simplicity it is taken to be parallel to the equi-
librium magnetic field. The slow resonant position is now determined by the condition V2 =

c2
T (xc) cos2 α, while the Alfvén resonant position is V2 = v2

A(xa) cos2 α. The first main effect of
the equilibrium flow is the introduction of a mode shifting due to the coupling between the lo-
calized slow or Alfvén waves and the equilibrium flow. We consider the homogeneous flow to be
defined as

v0 =

{
0, x < 0,

v0, x > 0,
(6.79)

and the inhomogeneous flow to be given by

v0 =

{
0, x < 0,

v0(x), x > 0,
(6.80)

where the spatial dependence of v0 is assumed to be a monotonically increasing linear function.
We do not give all the details of how to derive the modified absorption rate due to the presence
of equilibrium flows, since the procedure is identical to the one shown in Sect. 6.4 and 6.5.
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The modified coefficient of wave energy absorption, at the slow resonance, is obtained as

Γc =
4τcµ

µ2 + υ2
− ζ2 27p2

eτ3
cµ3 cos4 α

6π2V2k2x2
0 (µ2 + υ2)

2
, (6.81)

where, for the homogeneous flow we have

τc =
πkV5

ρ0cv4
Ac

|∆c| cos2 α
, µ =

κeV
ρe

(
V2 − v2

Ae
cos2 α

)

υ =
κiV

ρi

(
V2 − v2

Ai
cos2 α

) − kVP

∫x0

0

1

F̃(x)
dx, (6.82)

and for the inhomogeneous flow τc and υ are as in Eq. (6.82), but µ is given as

µ =
κeV

ρe

(
V2 − v2

Ae
cos2 α

) . (6.83)

This is in complete agreement with Ballai and Erdélyi (1998) and Erdélyi and Ballai (2001).
In the case of the Alfvén resonance, the coefficient of wave energy absorption if found to be in

the form of Eq. (6.76). The quantities µ and υ take the same form as at the slow resonance, i.e. Eq.
(6.82) in a homogeneous flow and Eq. (6.83) in an inhomogeneous flow, however, τa is prescribed
by

τa =
πkV sin2 α

ρ0a |∆a|
. (6.84)

6.8 Conclusions

In the present chapter we have investigated (i) the effect of nonlinearity and dispersion on the
interaction of fast magnetoacoustic (FMA) waves with a one-dimensional inhomogeneous mag-
netized plasma with strongly anisotropic transport processes in the slow dissipative layer (ii) the
interaction of FMA waves with Alfvén dissipative layers. The study is based on the nonlinear
theory of slow resonance in strongly anisotropic and dispersive plasmas developed in Chapter
3 and the theory of Alfvén resonance developed in Chapter 4. Additionally, we investigated the
effect of equilibrium flows on the resonant absorption.

We have assumed that (i) the thickness of the slab containing the inhomogeneous plasma
(Region II) is small in comparison with the wavelength of the incoming fast wave (i.e. kx0 ≪ 1);
and (ii) the nonlinearity in the dissipative layer is weak - the nonlinear term in the equation
describing the plasma motion in the slow dissipative layer can be considered as a perturbation
and nonlinearity gives only a correction to the linear results.

Applying a regular perturbation method, analytical solutions in the slow dissipative layer are
obtained in the form of power expansions with respect to the nonlinearity parameter ζ. Our main
results are the following: nonlinearity in the dissipative layer generates higher harmonic contri-
butions to the outgoing (reflected) wave in addition to the fundamental one (in agreement with,
e.g. Ballai et al., 1998a; Erdélyi and Ballai, 2001). The dispersion does not alter this, however, the
phase and amplitude of some of the higher harmonics are different from the standard nonlinear
counterpart (see discussions before). Dispersion in the slow dissipative layer further decreases
the coefficient of the wave energy absorption. The factor of alteration to the nonlinear correction
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of the coefficient of wave absorption due to dispersion is 2600%. Remember, however, that the
nonlinear correction is multiplied by the small parameter ζ2, so the effect to the overall coefficient
of wave energy absorption is still small.

Calculating the coefficient of wave absorption at the Alfvén resonance confirms the linear the-
ory of the past and verifies the approach taken to be correct. As our physical set-up of the problem
(for the Alfvén resonance) matches the typical conditions found in the solar corona, hence, these
results can be applied to it. The equilibrium state of the problem (for the slow resonance) can
match conditions found in the upper chromosphere, where FMA waves may interact with slow
dissipative layers, and if the reduction in the coefficient of wave energy absorption persists to
the strong nonlinear case (as with the long wavelength approximation found by Ruderman, 2000)
dispersion may have further implications to the resonant absorption in the solar atmosphere.

In the next chapter we shall theoretically and numerically investigate coupled resonances,
which builds from the work in the present chapter to obtain a more realistic model for a solar
physical description. In addition, we will numerically analyze the absorption of fast waves at
the Alfvén resonance as a possible scenario of the interaction of global fast waves (modelling EIT
waves) and coronal loops.
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7
Numerical analysis of resonant absorption of

FMA waves due to coupling into the slow and
Alfvén continua

In Chapter 6 we investigated the resonant absorption of fast magnetoacoustic (FMA) waves at slow and
Alfvén dissipative layers in anisotropic and dispersive plasmas. In the present chapter we extend the study
to investigate coupled resonances. A coupled resonance occurs when two different resonances are in close
proximity to each other, causing the incoming wave to act as though it has been influenced by the two
resonances simultaneously. Numerical results are analyzed to determine the coefficient of wave energy
absorption at both the slow and Alfvén resonance positions, as well as at the coupled resonance. The
results are based on the two simplifying assumptions that (i) nonlinearity is weak, and (ii) the thickness
of the inhomogeneous layer is small in comparison to the wavelength of the wave, i.e. we apply the so-
called long wavelength approximation. In order to cast both resonances together, the coefficient of wave
energy absorption at the coupled resonance is derived and analyzed for conditions typical for the solar
chromosphere. Our investigation shows that the wave energy absorption is heavily dependent on the angle
of the incident wave in combination with the angle of the equilibrium magnetic field with respect to the
vertical direction. The results of the present chapter have been submitted to Astron. Astrophys. (Clack
et al., 2009a).

If I have been able to see further, it was only because I stood on the shoulders of giants.
(Isaac Newton 1643 − 1727)
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7.1 Introduction

The complicated interaction of the motion of plasma with the magnetic fields is one of the most
interesting processes in the solar atmosphere. A highly non-uniform and dynamical system, such
as the solar atmosphere, is a perfect medium for magnetohydrodynamic (MHD) waves. These
waves are able to transport momentum and energy which can be dissipated. One of the many
possibilities of the conversion of the energy to heat is through resonant absorption. The existence
of resonant absorption is due to the coupling of global waves and oscillations to local waves in a
non-ideal and inhomogeneous plasma.

It is well known (and discussed in Sect. 6.1) that in order to have acceptable heating by FMA
waves coming from lower regions (e.g. generated by convective motions below the photosphere),
the waves should not be reflected by the steep rise of the Alfvén and / or slow wave speed with
height, nor should they become evanescent. However, this is difficult to prevent. On the other
hand, to interact resonantly with the slow waves, FMA waves would only have to propagate to
the upper chromosphere, since the ratio between characteristic speeds (slow and Alfvén) is much
smaller than in the solar corona. Only the high-frequency waves of the full FMA spectrum can
reach the corona (with periods of a few tens of seconds). The energy flux density of fast waves at
the bottom of the corona required for significant heating is not inconsistent with the upper limit
on acoustic waves (Athay and White, 1978). There is an alternative to the FMA waves propagating
from the photosphere towards the solar corona. FMA waves (as well as slow and Alfvén waves)
may be generated locally in the chromosphere and corona by, e.g. phenomena involving magnetic
reconnection. It was suggested by Parker (1988) that shuffling the magnetic field in the solar
atmosphere (by convective motion in lower regions) builds up magnetic stresses which can be
released through, e.g. reconnection providing the energy to maintain the high temperature of the
solar upper atmosphere (see, e.g. Roussev et al., 2001a,b,c). It is known that reconnection events
can produce (amongst other things) waves.

The present chapter has three major aims. First, is to (numerically) study the nonlinear res-
onant interaction of FMA waves coupled to the slow continua in strongly anisotropic and dis-
persive plasmas (conditions typical of the solar upper chromosphere). Secondly, to numerically
investigate the resonant absorption of FMA waves at the Alfvén resonance for conditions typically
found in the solar corona. Finally, we numerically analyse the resonant absorption of FMA waves
at a coupled (slow and Alfvén ) resonance. The present chapter takes advantage of the analytical
study presented in Chapter 6, where we derived the coefficient of wave energy absorption for
FMA waves at the two separate slow and Alfvén resonances. We use a simplified slab geometry
throughout the chapter, where an inhomogeneous and dissipative magnetic slab is sandwiched
by two semi-infinite homogeneous plasma regions.

7.2 The equilibrium and assumptions

The magnetic and density topology of the solar atmosphere is highly complex and, therefore,
there are many degrees of freedom. However, to make our investigation tractable mathematically,
we study the interaction of incident FMA waves in a one-dimensional plasma. The dynamics and
absorption of the waves will be studied in a Cartesian coordinate system. The equilibrium con-
figuration is similar to that in Chapter 6 (see Fig. 6.1) and consists of an inhomogeneous and
dissipative magnetised plasma 0 < x < x0 (Region II) sandwiched between two semi-infinite
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homogeneous magnetised plasmas x < 0 and x > x0 (Regions I and III, respectively). The equi-
librium magnetic field, B, is unidirectional and lies in the yz−plane. In what follows we use the
same subscript notations as in the previous chapter, namely, the subscripts ’e’, ’0’ and ’i’ denoting
the equilibrium quantities in the three regions (Regions I, II, III, respectively). All equilibrium
quantities are continuous at the boundaries of Region II, and they satisfy the equation of total
pressure balance, which prescribes that the density ratio between Regions I and III satisfy the
relation (6.2).

We consider an equilibrium such that the plasma in Region III is both hotter and more rarefied
than in Region I and assume a simple monotonic linear profile for all variables in Region II. This
choice provides a single unique resonant surface for both the slow and Alfvén resonances. The
objective of the present chapter is to study the resonant absorption of FMA waves at slow and
Alfvén dissipative layers. We have two cases which we wish to investigate. First, we study the
absorption of fast waves at Alfvén resonance as a possible scenario of the interaction of global
fast waves (modelling EIT waves) and coronal loops. Secondly, we analyse the absorption of fast
waves at the slow resonance as a possible scenario for heating in the upper chromosphere. When
a fast wave interacts with a slow resonance, an Alfvén resonance is also present. We consider this
in our analysis and study the total (i.e. coupled) absorption in the inhomogeneous layer.

In an attempt to remove other effects from the analysis we consider the incoming fast wave to
be entirely in the xz−plane, i.e. ky = 0. The resonant positions are located where the global fast
wave speed coincides with that of the local slow/Alfvén speed. The dispersion relation for the
impinging propagating fast waves takes the form of Eq. (6.7). We assume the plasma is strongly
magnetized in the three regions, such that the conditions ωi(e)τi(e) ≫ 1 are satisfied. Due to
the strong magnetic field, we are bound by similar transport processes as considered in Chapter
6. Thus, for slow waves, it is a good approximation to retain only the first term of Braginksii’s
expression for viscosity, namely compressional viscosity, and thermal conduction. In addition, the
dispersion due to Hall currents is included. Alfvén waves are transversal and incompressible so
they are affected by the second and third components of Braginskii’s stress tensor, shear viscosity,
and finite electrical conductivity. All other transport mechanisms can be neglected. For further
details we refer to Sect. 2.4 and 6.2.

The dynamics of nonlinear resonant MHD waves in anisotropic and dispersive plasmas was
studied in chapters 3 and 4 where we derived the governing equations and connection formulae
necessary to study resonant absorption in slow / Alfvén dissipative layers. In Chapter 6 we an-
alytically studied the interaction of fast waves with the slow and Alfvén resonances and derived
the coefficients of wave energy absorption. We intentionally overlooked the complication of an
Alfvén resonance being present at the same time as the slow resonance. In the present chapter,
however, we include both resonances. These conditions would be typical of the upper chromo-
sphere where the plasma-β goes from being larger than unity to becoming smaller than unity,
retaining the monotonic dependence of characteristic speeds in the inhomogeneous layer.

The key assumptions we use in the present chapter in order to facilitate analytical progress are
connected to the strength of nonlinearity and the wavelength of the incoming wave. First, from
the very beginning we assume that nonlinearity, at the slow resonance, is weak. We apply this
restriction as we cannot solve Eq. (3.60) analytically, in the limit of strong nonlinearity. Secondly,
we assume that the thickness of the inhomogeneous region (Region II) is thin in comparison to
the wavelength of the impinging fast wave, i.e. kx0 ≪ 1, which has two implications. The
first is to enable us to neglect terms of the order of k2x2

0 (and above) in the calculations. The



7.3. COEFFICIENT OF WAVE ENERGY ABSORPTION 115

second consequence is more subtle. To have a coupled resonance, the incoming FMA wave must
resonantly interact with an Alfvén resonance and be partially transmitted and then resonantly
interact with a slow resonance. On one hand, if the Alfvén and slow resonance are more than
one wavelength, k−1, apart the transmitted wave will have decayed by the time it reaches the
slow resonance. On the other hand, if the Alfvén and slow resonance are within one wavelength1

of each other then the transmitted wave will be able to interact with the slow resonance. So,
if an environment is set up such that both an Alfvén and a slow resonance occur within the
inhomogeneous region the distance between the resonances, x1, must satisfy the condition x1 <

x0. Hence, we have kx0 ≪ 1 ⇒ x0 ≪ k−1 ⇒ x1 ≪ k−1.
We will use the same governing equations, absorption coefficients and results as obtained in

Chapter 6. We will only derive new results necessary to investigate the processes at the coupled
resonance.

7.3 Coefficient of wave energy absorption

To derive the coefficient of wave energy absorption we follow the procedure presented in Chapter
6. The basic premise is that one single monochromatic wave (the FMA wave) interacts with the
inhomogeneous layer and one (or more) wave leaves it. The difference of the energy flux entering
and leaving the resonance quantifies the energy resonantly absorbed inside the inhomogeneous
region. This energy can then be converted into heat by dissipation. The coefficient of wave en-
ergy absorption is just the percentage of the energy entering the inhomogeneous region that is
resonantly absorbed.

For simplicity, in the present chapter, we restrict ourselves to a static equilibrium. As shown
in Chapter 4, at the Alfvén resonance the wave dynamics is described by linear theory. There-
fore, the incoming monochromatic FMA wave is partly reflected, transmitted and dissipated. The
reflected wave is monochromatic, with amplitude Aa, and the transmitted wave from the inho-
mogeneous region carries no energy because it is decaying (see, e.g. Goossens, 1994; Goossens
et al., 1995; Goossens and Ruderman, 1995; Tirry and Goossens, 1995). The coefficient of wave
energy absorption of FMA waves at the Alfvén resonance is given by Eq. (6.76), where τa is
provided by Eq. (6.69)

At the slow resonance the dynamics is governed by the nonlinear equation (3.60). Similar to
the Alfvén resonance, the incoming FMA wave is partly reflected, transmitted and dissipated.
The transmitted wave is decaying similar to the Alfvén resonance, however, the reflected wave
includes higher harmonics in addition to the fundamental mode. Using the approximation of
weak nonlinearity, in the first order of approximation, we find the fundamental mode of the
reflected wave. In the second order approximation, we obtain that the higher harmonics are of the
order of k2x2

0, which are subsequently neglected as our analysis is restricted to terms proportional
to kx0. In the third order of approximation, we find an additional contribution to the reflected
fundamental mode due to nonlinearity and dispersion. Higher order approximations result in
non-monochromatic harmonics which are subsequently ignored. The coefficient of wave energy
absorption of fast magnetoacoustic waves at the slow resonance is given by the addition of Eqs

1We want the distance to be much less than one wavelength so that we can assume the transmitted wave loses no
energy before interacting with the slow resonance. Distances over one wavelength results in the energy lost by the trans-
mitted wave become very large and non-negligible.
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(6.72) and (6.73) resulting in

Γc =
4τcµ

µ2 + υ2
− ζ2 27p2

eτ3
cµ3 cos4 α

6π2V2k2x2
0 (µ2 + υ2)

2
+ O(k2x2

0), (7.1)

where τc, µ and υ are given by Eq. (6.30) and ζ, defined by Eq. (6.19), is assumed to be small.

Equations (6.76) and (7.1) involve variables that need some explanation. The variable
κe = ± tan φ is the angle at which the impinging FMA makes with the z−axis, while the sign of
the variable κi, defined as

κi =

√

−
V4 − V2

(
c2

Si
+ v2

Ai

)
+ c2

Si
v2

Ai
cos2 α

(
c2

Si
+ v2

Ai

) (
V2 − c2

Ti
cos2 α

) , (7.2)

gives the condition of wave leakage in region II. If the terms inside the square root of Eq. (7.2) are
negative, κi is imaginary and Eq. (6.15) is no longer an elliptical equation, which corresponds to
wave leakage. The Cauchy principal part, P, is used in υ [see Eq. (6.30)] because the integral is
divergent at infinity. The function F̃−1(x) originates after solving the ideal linear MHD equations
in region II and is obtained from Eq. (3.21).

As mentioned earlier, the previously discussed coefficients of wave energy absorption (taken
separately) do not give the complete picture. In principle, every time a FMA wave interacts
with a slow resonance an Alfvén resonance is also present (it is easy to show that under coronal
conditions, the vise-versa statement is not true). Usually, to avoid this problem we would align
the magnetic field with the z−axis, and since ∂/∂y = 0 the Alfvén resonance would vanish.
However, to include Hall currents (which provides dispersive effects at the slow resonance) we
must have an angle between the z−axis and the equilibrium magnetic field. In an attempt to tackle
this problem, we investigate the interaction of FMA waves with an inhomogeneous region that
contains both a slow and an Alfvén resonance. To carry this out analytically, we must assume that
the thickness of the inhomogeneous region is much smaller than the wavelength of the incoming
wave, i.e. kx0 ≪ 1 (see discussion at the end of Sect. 7.2). We also assume that there is a single
and unique slow and Alfvén resonance, (this assumption can be relaxed later).

To find the coefficient of wave energy absorption at a coupled resonance the procedure is iden-
tical to that carried out in Sect. 6.4, so we write out our findings rather than presenting all calcu-
lations in detail. First, we found that, at a coupled resonance, in the first order approximation (i.e.
deriving the fundamental mode form), we cannot decouple the Alfvén and slow reflected waves.
This is in agreement with Woodward and McKenzie (1994a,b) who state that when Hall currents
are present the slow and Alfvén modes cannot always be decoupled. Even though these studies
were investigating stationary waves, we believe the same applies here with resonant absorption,
specifically, if we approximate that the wave interacts with both resonances simultaneously. The
amplitude of the reflected wave in the first order of approximation is derived as

Aa + A1c = −pe
τ − µ + iυ

τ + µ + iυ
, (7.3)

where τ = τa + τc, and µ and υ are given by Eq. (6.30). In higher order approximations we
find that the Alfvén resonance has no contribution to the amplitudes of the reflected waves. In
particular, the addition to the fundamental mode due to nonlinearity and dispersion is identical
to that found when no Alfvén resonance is present, which is to be expected, since the dynamics
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at the Alfvén resonance is linear and, therefore, should have no contribution to nonlinear effects.

The coefficient of wave energy absorption is given by Eq. (6.71) where An denotes the total
amplitude of the reflected wave in a particular order of approximation. Calculating the coefficient
of wave energy absorption of FMA waves inside the inhomogeneous region we find that (in the
long wavelength approximation)

Γ =
4τµ

(τ + µ)2 + υ2
− ζ2 27p2

eτ3
cµ3 cos4 α

6π2V2k2x2
0 (µ2 + υ2)

2
+ O(k2x2

0). (7.4)

In the next section, we will numerically analyse the coefficient of wave energy absorption
and, in particular, we investigate what is the significance of the angle of the incident wave and
the inclination of the ambient magnetic field on the absorption of wave energy at the coupled
resonance.

7.4 Numerical results

Before proceeding to the mentioned analysis of the wave energy absorption, it is instructive to
consider the contributions to τ due to the slow and Alfvén resonances. We can easily calculate
what percentage of τ comes from each resonance by studying Eq. (7.4). Immediately it is clear
that the nonlinear term comes wholly from the slow resonance, as we have already discussed. The
linear term is a combination of the resonant absorption due to the slow and Alfvén resonance. The
percentage contributions of each resonance is found by calculating τc/τ (% of slow contribution)
and τa/τ (% of Alfvén contribution). Using Eqs (6.30), (6.69) and (7.4) we obtain

τc

τ
=

K1

K1 + K2
,

τa

τ
=

K2

K1 + K2
, (7.5)

where
K1 = ρ0a |∆a|V4, K2 = ρ0cv4

Ac
|∆c| sin2 α cos2 α. (7.6)

The particular form of Eq. (7.5) depends entirely on the choice of profile for the equilibrium
quantities inside the inhomogeneous layer. For our analysis, in Region II (the inhomogeneous
region) we have chosen a monotonically increasing linear profile for all equilibrium quantities
(including characteristic speeds) of the form f(x) = f(0) + x/x0[f(x0) − f(0)]. Using the values
vAe = 28 kms−1, cSe = 34 kms−1, vAi = 156 kms−1, cSi = 65 kms−1 and ρe = 5 × 10−11 kgm−3

for characteristic speeds we can obtain the variations given by Fig. 7.1.

Figure 7.1 shows the percentage contribution to the quantity τ due to the slow (left) and Alfvén
resonance (right). It is easily seen that φ does not have much effect on the contributions, however,
α has a marked effect. At α = 0, there is no contribution from the Alfvén resonance - which is
to be expected since, for this particular inclination, global oscillations cannot resonantly interact
with local Alfvén modes. As the angle α increases the contribution due to the Alfvén resonance
increases rapidly (and accordingly the contribution from the slow resonance decreases), and by
α = π/4 the Alfvén resonance contributes 80% of the absorbed energy. At α = π/2 the slow
resonance disappears, and so its contribution drops to zero.
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Figure 7.1: Percentage contribution to τ in the coupled resonance due to the slow resonance (left)
and the Alfvén resonance (right) in terms of the wave incident angle, φ, and the inclination angle
of the magnetic field, α.

7.4.1 Alfvén resonance: Modelling the interaction of EIT waves with coronal
loops

Fast waves that are generated by the convection motion and propagate upwards are reflected by
the strong density gradients in the upper chromosphere, so just a tiny proportion of FMA waves
are able to reach the corona. Fast waves, however, can be generated in the corona by, e.g. flaring
processes, in particular coronal mass ejections (CMEs). Global disturbances generated by CMEs,
known as EIT (Extreme ultraviolet Imaging Telescope) waves, are believed to be FMA waves (Bal-
lai et al., 2005) propagating in the quiet Sun. In their propagation, EIT waves interact with active
region loops setting them into motion. The present section is devoted to the study of resonant
coupling of FMA waves (modelling EIT waves) with local Alfvén waves in coronal loops. One
major problem identified with the model we would like to use is that the EIT waves have very
low speeds (300 − 500 kms−1) compared with the accepted Alfvén speed outside coronal loops
(1200 kms−1). The problem associated with the speed of EIT waves could be resolved by assum-
ing a steady rise in temperature and magnetic field strength as an active region is approached.
The rise in temperature increases the sound speed, while the increase in strength of magnetic
field will cause the Alfvén speed to grow. Hence, the FMA wave speed will increase as it is a
combination of the sound and Alfvén speeds. As the gradients are not steep enough to cause
shocks or reflection, the EIT waves are accelerated to the local speeds as they approach active
regions.

Another assumption our model relies on is that vAi > vAe , i.e. the Alfvén speed in Region I
is less than that in Region III. Since we can only solve F̃(x) when we assume monotonic functions
inside the inhomogeneous region we have to chose whether these functions will increase or de-
crease. If the functions decrease in the inhomogeneous region there will be no absorption since the
FMA waves will never resonantly interact with the local Alfvén waves. However, if the functions
increase, we do achieve resonant interactions of the two modes. A more accurate model of reality
at a coronal loop’s edge would be a complicated non-monotonic function that both increases and
decreases the local equilibrium parameters which could create resonant interactions. Essentially,
there would be several resonant positions inside the inhomogeneous region, however, we cannot
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analytically solve such a model at present (due to the form that F̃(x) would take). Therefore, to
provide a valuable insight of resonant absorption at coronal loops, we choose an unrealistic but
tractable model. Mathematically, the above restriction can be easily represented by the condition
that max[vA(x)] > vAe where x ∈ (0, x0]. In addition, for a single unique resonance we need
to impose the constraint dvA(x)/dx ̸= 0, x ∈ (0, x0). It is also clear, from the outset, that under
coronal conditions (β ≪ 1) FMA waves will never resonantly interact with local slow waves.

To simulate conditions typical of the solar corona we consider vAe = 1200 kms−1, cSe =

200 kms−1, vAi = 1400 kms−1, cSi = 250 kms−1 and ρe = 1.33 × 10−12 kgm−3. We select k =

5 × 10−8 m−1 such that the incoming FMA wave has a period of about 100 s (consistent with
observed EIT waves in the solar corona). It should be mentioned that the analysis presented in
Fig. 7.2 is valid for any k as long as the dimensionless quantity kx0 satisfies the condition kx0 ≪ 1.
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Figure 7.2: The wave energy absorption coefficient of FMA waves at the Alfvén resonance. Here
we have vAe = 1200 kms−1, cSe = 200 kms−1, vAi = 1400 kms−1, cSi = 250 kms−1 and ρe =
1.33 × 10−12 kgm−3. The dimensionless quantity, kx0, takes the values (from top left to bottom
right) 0.01, 0.1, 0.5 and 1.0, respectively.

Figure 7.2 gives the wave energy absorption coefficient for kx0 = 0.01, 0.1, 0.5 and 1.0 (the
last one not being fully consistent with our assumptions, but illustrates the trend). The angle of
the incoming FMA wave, φ, takes values between 0 and π/2, while the angle of the equilibrium
magnetic field, α, only varies between 0 and π/4, because beyond this point the integrals cal-
culated are divergent and the numerical analysis cannot resolve the Cauchy principal part. The
coefficient of wave energy absorption should take a value between 0 and 1, and can be thought
of the percentage of incoming wave energy transferred to local Alfvén waves by resonance. We
recognize that the plasma is unstable when the value of the coefficient of wave energy absorption
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is negative, provided a flow exists. The plasma can also create over-reflection, and we observe
this in the coefficient of wave energy absorption when the value becomes greater than unity. Both
the phenomena of over-reflection and instabilities occur for α > π/4.

The first thing to notice, about Fig. 7.2, is that as kx0 increases so does the coefficient of wave
energy absorption. In the same way, the area over which absorption can take place is also increas-
ing. In general, we can state that the most efficient absorption occurs at angles of inclination of
φ which are larger than π/4, while the most efficient absorption with respect to α changes de-
pending on kx0. The larger the value of kx0 the less influential α becomes on the most efficient
absorption regions. At approximately α = π/5 ≈ 0.63 the absorption drops to zero for all values
of kx0 and φ, which could be explained by the inhomogeneous layer becoming transparent to the
incoming wave, a phenomenon that cannot be explained by the present model (further study is
needed to find out whether it is a numerical artefact or a physical property).

It is also clear from Fig. 7.2 that FMA waves are absorbed efficiently at the Alfvén resonance,
which is encouraging when thinking about EIT waves within the solar corona. The EIT waves
could be absorbed by Alfvén resonances present in / or near coronal loops (arcades). In some
cases all of the energy of the incoming wave can be absorbed, and dissipated by, e.g. viscosity.
The variation in absorption due to combinations of α and φ may help explain why when an
incoming wave impacts a coronal arcade, some loops oscillate more than others and some loops
dim and while others get brighter. When the frequency of the incoming FMA wave does not fall
within the frequencies of the Alfvén continuum the energy of the incident wave is, likely to be,
transferred to the coronal loop as kinetic energy, thereby setting the loop into oscillation. These
oscillations are studied in the framework of coronal seismology for the purposes of field and
plasma diagnostics.

We note here that, if the density is varied (within reasonable parameters), the absorption is
changed only slightly. If we change the density so it is really high or low (for the solar corona)
the absorption starts dramatically changing, eventually leading to a breakdown of the numerical
analysis. We do not show any plots of the variation of the absorption coefficient with density
because the values at which the coefficient of wave energy absorption is noticeably changed are
not consistent with observation of the solar corona (or chromosphere). The last significant vari-
ables to discuss are the equilibrium wave speeds. The wave speeds here have been selected to be
consistent with the environment of the solar corona. However, we know that there is a plethora
of wave speeds available in the inhomogeneous plasma of the corona. We have tested different
values of equilibrium speeds, and the overall pattern of absorption is identical to that found in
Fig. 7.2, and the absorption coefficient remained relatively similar to those discussed above.

7.4.2 Coupled resonance: Modelling chromospheric absorption

To model a coupled resonance, we consider a slow and an Alfvén resonance so close together that
they are both able to interact with the incoming FMA wave (so-called coupled resonance). This
means that we will lower our applicability region to the denser chromosphere. To match condi-
tions typical of the chromosphere we have taken the values vAe = 28 kms−1, cSe = 34 kms−1,
vAi = 156 kms−1, cSi = 65 kms−1 and ρe = 3.99 × 10−11 kgm−3. The specific values of equilib-
rium quantities can be changed, however, the overall trend of absorption will remain the same as
shown here. The nonlinear correction to linear absorption at the coupled resonance comes solely
from the slow resonance (as the Alfvén resonance can be described by linear theory) and is very
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small when compared to the linear absorption coefficient (in line with the weak nonlinear limit
imposed in the derivations). In Figs 7.3–7.6 we display the linear coefficient of wave energy ab-
sorption for the slow, Alfvén and coupled resonance for comparison and we show the nonlinear
correction to the coupled resonance for values of kx0 = 0.01, kx0 = 0.1, kx0 = 0.5 and kx0 = 1.0,
with the last value of kx0 not being fully consistent with the assumption of the long wavelength
approximation, but illustrates the overall trend.
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Figure 7.3: Comparison of the linear absorption at the slow (top left), Alfvén (top right) and
coupled (bottom left) resonances for kx0 = 0.01. We also show the nonlinear absorption for the
coupled (and slow) resonance.

The first striking result to notice about Figs 7.3–7.6 is how similar they appear compared to
each other. The first three figures are fully valid using the method presented in the present chap-
ter, while the last one is not strictly valid. We have truncated the abscissa at α = 6π/25, because
the integrals become divergent and the numerical analysis cannot resolve the Cauchy principal
part.

In all of Figs 7.3–7.6 the bottom right plot describes the nonlinear coefficient of wave energy
absorption, which are incredibly small (under the conditions presented here). The reason for such
small values, in these cases, is that the ratio of magnetic and plasma pressures (the plasma-β) has
a value smaller than unity. When β ≪ 1 the plasma kinetic pressure is low and, by extension,
[examine Eq. (7.4)] so is the nonlinear coefficient of wave energy absorption. In addition, the
nonlinear coefficient must be multiplied by the very small parameter ζ2. Therefore, the nonlinear
correction of wave energy absorption at coupled resonances in the chromosphere is truly tiny in
comparison to the linear wave energy absorption and acts to decrease the total coefficient of wave
energy absorption.

In general, we can state that the greatest linear wave energy absorption at the slow resonance
occurs at small values of φ (0 < φ < 0.3) and small to moderate values of α (0.1 < α < 0.6),
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Figure 7.4: The same as Fig. 7.3, but here the coefficient of wave energy absorption is plotted for
kx0 = 0.1.
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Figure 7.5: The same as Fig. 7.3, but here the coefficient of wave energy absorption is plotted for
kx0 = 0.5.

whereas the the greatest linear wave energy absorption at the Alfvén resonance occurs at moder-
ate values of α (0.6 < α < 0.8) and a wide range of values of φ (0.2 < φ < 1.2). For all values of
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Figure 7.6: The same as Fig. 7.3, but here the coefficient of wave energy absorption is plotted for
kx0 = 1.0.

kx0 a larger percentage of energy is absorbed at the Alfvén resonance compared to the slow res-
onance, which is indicated by the coefficient of wave energy absorption having greater values at
the Alfvén resonance. We can also state that increasing kx0 produces more absorption (of course
up to the point where the mathematical model becomes invalid).

The most interesting feature of these plots is the coupled resonance. When there is no ab-
sorption at both the slow and Alfvén resonance, the absorption at the coupled resonance is also
zero and if there is absorption at only one of the slow or Alfvén resonance the coefficient of wave
energy absorption at the coupled resonance is identical to the value at the single resonance. How-
ever, more interestingly, when there is absorption at both the single Alfvén and slow resonance the
absorption at the coupled resonance is always greater than the sum of the two single absorption
coefficients. The greater coefficient of wave energy absorption at the coupled resonance com-
pared to the two single resonances implies that there is more energy available for heating the
plasma. We shall use Fig. 7.5 to clarify what we have just explained. At the values of, e.g.
α = 0, φ = π/2 in all three plots we can clearly see the coefficient of wave energy absorption is
zero. When, e.g. α = 0, φ = 0.4 the coefficient of wave energy absorption at the Alfvén resonance
is zero, while at the slow and coupled resonance it is 0.11. If we change the angles such that, e.g.
α = 6π/25, φ = 1.0 the coefficient of wave energy absorption at the slow, Alfvén and coupled
resonances are 0.067, 0.13 and 0.23, respectively, hence it is clear that 0.23 > 0.13 + 0.067 = 0.197.
The same procedure can be carried out at any values of α and φ where there is absorption at both
the single Alfvén and slow resonances.

There is also clear evidence in these plots that the efficiency at which FMA waves are ab-
sorbed at the Alfvén resonance under chromospheric conditions is far lower that in the coronal
counterpart.
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7.5 Conclusions

In the present chapter, we have investigated the absorption of fast magnetoacoustic (FMA) waves
at individual and coupled slow and Alfvén resonances. We have derived the wave energy ab-
sorption coefficient analytically by applying the long wavelength approximation (kx0 ≪ 1). An-
alytical results for the absorption at the separate slow and Alfvén resonances found in Chapter 6
were numerically analysed.

We have shown that the absorption of incoming FMA waves depends heavily on the combina-
tion of the angle of incidence of the wave (φ) and the angle of the equilibrium magnetic field (α).
At some combinations of φ and α, the quantity κ2

i < 0 which reduces absorption to zero, because
the incident FMA wave can leak passed the resonances. Normally, the inhomogeneous layer is
translucent to waves, but occasionally when the conditions are right, the inhomogeneous layer
can become transparent so that they can pass through without undergoing resonant absorption.

We introduced the concept of coupled resonances which could be critical for the heating of the
solar upper atmosphere, because FMA waves propagate throughout the solar atmosphere. When
FMA waves interact with a slow resonance, an Alfvén resonance is always present as well (as long
as there is an angle between the magnetic field and the direction of wave propagation). We believe
this is the most likely form of resonant absorption in the upper chromosphere. In the corona, the
Alfvén (and hence FMA) waves speeds are much larger then the slow speed, so just an Alfvén
resonance is present when a FMA wave is incident on an inhomogeneous plasma layer. The
governing equations for the slow and Alfvén resonances are derived considering nonlinearity,
and even though nonlinearity only slightly decreases the resonant absorption, in comparison to
linear theory, it provides a device by which the heated plasma can be transported: the mean shear
flow, creating turbulence, which can distort the inhomogeneous layer (see, e.g. Ofman and Davila,
1995; Clack and Ballai, 2009a), enhancing absorption and transporting heated plasma away from
the resonance.

We assumed, for simplicity, that the equilibrium quantities inside the inhomogeneous layer
increased monotonically, which, in reality, is not always the case. If we allow the equilibrium
quantities to vary non-monotonically, the situation is changed. If we still use the long wavelength
approximation, the calculations are almost identical to the ones produced in the present chapter.
However, instead of one position for the Alfvén and slow resonances (different for each one) there
could be several. Again, we would not be able to separate the individual outgoing waves, but the
collective outgoing wave would be defined exactly as Eq. (7.3), where τ would equal the addi-
tion of all the τcs and τas associated with the different resonant points. The form of the τcs and
τas would be identical to Eqs. (6.30) and (6.69), respectively, though the quantities would take
different values corresponding to the different resonant positions. In general, this would pro-
duce greater absorption of wave energy inside the inhomogeneous layer, creating further heating
possibility.

Extreme ultraviolet (EUV) observations of active regions showed that, when coronal arcades
oscillate under the influence of an external driver, some of the loops oscillate more than others,
some of the loops do not oscillate at all and some become dimmer in the wavelength that they have
been observed in. Part of this behaviour can be explained by the varying strength of the magnetic
field inside the loops, however, this is not fully satisfactory. We speculate that this phenomenon is
predominately created by resonant absorption. The varying conditions allow for varying degrees
of resonant absorption. The loops that oscillate the most do not have the conditions necessary for
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resonant absorption, so the incident waves just transfer their kinetic energy to the loops. Other
loops have the right conditions for resonant absorption, and some even have the conditions for
multiple resonant positions. These loops will oscillate less, because the wave energy is being
absorbed. The loops with the conditions for multiple resonances will oscillate the least (possibly
not at all) as more and more energy of the wave is deposited. These loops should either get brighter
or dimmer, since the loops are only observed in a single wavelength. If a loop brightens, the plasma
is emitting more intensely in the filter’s wavelength, but if a loop dims the loop could be getting
either cooler or hotter, as the plasmas emissions move out of the filter’s range. This explanation
covers all the observed properties of some coronal arcade oscillations, and could explain why
they are damped so quickly. The speculation must be viewed with caution as the heating due to
absorption is likely to take place over a small area, in comparison to the width of the loop.

We wish to add a note of possible caution to our results. We have two main assumptions
in creating our model (not including the monotonic functions inside the inhomogeneous layer,
discussed earlier). First is the long wavelength approximation; if we relax this assumption and
consider intermediate wavelengths then the FMA wave will always experience the influence of
the Alfvén resonance first, and since the inhomogeneous layer is nearly always translucent to the
incoming FMA wave no interaction with the slow resonance will occur. On the other hand, this
does not affect the Alfvén resonance. Secondly, since we used the equations derived in Chap-
ter 6, we assumed weak nonlinearity; we studied in this limit because the governing equation
is unsolvable analytically for arbitrary degrees of nonlinearity. The findings of Ruderman (2000)
showed that in the limit of strong nonlinearity the coefficient of resonant absorption is qualita-
tively the same as in the weak nonlinear limit (with the difference never being greater than 20%).
As explained above, intermediate values of wavelength disable the slow interaction anyway. Fur-
thermore, strong nonlinearity does not alter the Alfvén resonance.

Finally, we mention further work that we feel needs to be carried out. The work presented
here must be extended to higher dimensions. At present, it is only a 1-D model and the solar
atmosphere is, obviously, far more complex than this. The analytically obtained results show
trends that must be built on in more realistic models and have the results verifiably observed.
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8
Summary and conclusions

In the present chapter we draw the Thesis to an end, summarizing and reviewing the conclusions from each
of the individual chapters. Furthermore, we shall describe some further work that can be carried out in
the field of nonlinear resonant absorption. We also discuss the limitations and applicability of the research
presented in the Thesis. The subject of my research is laterally driven resonant absorption of MHD waves
in completely ionized and hot plasmas. In solar plasmas, the spectral theory predicts the existence of two
resonances: Alfvén and slow. In the case of the slow resonance we investigated the effect of Hall currents on
nonlinear resonant waves. At the Alfvén resonance we found the upper limit of linear theory and calculated
the mean shear flow generated by resonant absorption. We then studied the absorption of fast magnetoa-
coustic waves at Alfvén and slow resonances. Finally, we introduced the concept of coupled Alfvén and slow
resonances (in the context of chromospheric heating) and numerically analysed the resonant absorption of
FMA waves at these coupled resonances.

Nobody of any real culture, for instance, ever talks nowadays about the beauty of sunset. Sunsets are quite
old fashioned. To admire them is a distinct sign of provincialism of temperament. Upon the other hand

they go on.
(Oscar Wilde 1854 − 1900)
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8.1 Summary

The Sun is the most important celestial body for mankind’s existence and has been studied con-
tinuously for centuries. During the ongoing research many questions have been [believed to be]
answered, e.g. how the Sun creates energy, what is the Sun’s life cycle, what is the Sun made of,
etc., however, many more problems still remain unsolved. One such conundrum is the very high
temperatures achieved in the solar corona. The observational evidence of heating requirements
suggests that the complex magnetic field plays a vital role in all heating processes. The heating
process we considered in the present Thesis is resonant absorption, which is not only a viable
mechanism for supplying some of the heating requirement for coronal active regions, but can
also play a role in energy transfer in lower regions of the Sun such as the chromosphere and even
the photosphere. Recently, resonant absorption was proposed to be the mechanism responsible
for damping of oscillations in coronal magnetic structures, making resonant absorption one of the
cornerstones of coronal seismology.

Resonant absorption in an inhomogeneous magnetized plasma can occur whenever the fre-
quency of an externally driven wave matches a local plasma frequency, which causes resonant
energy transfer between the two systems. If the plasma is dissipative the resonantly transferred
energy can be efficiently damped (by, e.g. resistivity or viscosity) to create heating. In the pres-
ence of a resonant surface, some wave parameters can become divergent which results in the
increase of amplitude of resonant waves. The increasing amplitudes can cause a breakdown of
linear theory. In solar plasmas, where the dynamics is described within the framework of MHD,
there are two possible kinds of resonances: Alfvén and slow. The existence of these resonances
is rooted in the behaviour of eigenoscillations of plasmas with inhomogeneities in the transversal
direction with respect to the ambient magnetic field. The present Thesis investigated the mathe-
matical description of resonances. At the slow resonance we investigated the effect of Hall cur-
rents (generating nonlinear dispersion) on nonlinear resonant waves. At the Alfvén resonance
we found the upper limit of linear theory and calculated the mean shear flow generated by res-
onant absorption. We then studied the absorption of fast magnetoacoustic waves at Alfvén and
slow resonances. Finally, we introduced the concept of coupled Alfvén and slow resonances (in
the context of chromospheric heating) and numerically analysed the resonant absorption of FMA
waves at these coupled resonances.

The first two chapters of the present Thesis introduced the Sun and all of the critical concepts
required for the rest of the Thesis. We discussed the structure of the Sun, along with some of it’s
basic properties. The importance of the magnetic field was explained and magnetohydrodynamic
waves were introduced giving, first, observational evidence and, then, theoretical explanation of
their existence. Chapter 2 described the MHD equations and explained the assumptions used to
obtain them and, also, the concepts of resonant absorption, anisotropy, dispersion, nonlinearity
and the methodology for deriving governing equations were explained. In addition, for com-
pleteness, we described the procedure for finding the resonant interactions of linear slow MHD
waves (presented by, e.g. Sakurai et al., 1991b; Goossens and Ruderman, 1995) and reproduced the
nonlinear governing equation describing resonant slow waves in isotropic plasmas first derived
by Ruderman et al. (1997d). Nonlinearity needs to be considered when studying resonant ab-
sorption because the near-resonant behaviour of some equilibrium quantities is divergent which
causes local wave amplitudes to grow and in turn may lead to a breakdown in linear theory.

The nonlinear theory of resonant slow waves in strongly anisotropic and dispersive plasmas
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was presented in Chapter 3. Ballai et al. (1998b) investigated slow dissipative layers in anisotropic
plasmas, however, they neglected the dispersion due to Hall currents, which is inconsistent with
the condition that the plasma is highly anisotropic [ωe(i)τe(i) ≫ 1, where ωe(i) is the electron
(ion) frequency and τe(i) is the mean electron (ion) collision time], because under these conditions
it is essential to consider the off-diagonal terms of the conductivity tensor (Hall currents). It was
shown in Chapter 3 that dispersion effects due to Hall currents are of the same order of magnitude
as nonlinearity and dissipation inside the anisotropic dissipative layer. Outside the dissipative
layer the results of the chapter coincided with all previous studies of resonant slow waves because
the wave dynamics is described by linear and ideal theory far from the resonance (outside the
dissipative layer) and the dispersion due to Hall conduction is a nonlinear term (only considered
important in the dissipative layer). The chapter concludes that dispersion due to Hall currents
at the slow resonance in strongly anisotropic plasmas results in the addition of a nonlinear term
describing the dispersion compared with the result of Ballai et al. (1998b). Indeed the governing
equation described by Ballai et al. (1998b) can be thought of a special case of Eq. (3.60) when
dispersion due to Hall currents is negligible. The form of the jump in total pressure and the
implicit connection formula for the normal velocity are similar to those previously found (see,
e.g. Ruderman et al., 1997d; Ballai et al., 1998b), however, due to the difference in the governing
equation the magnitude of the jump in the normal component of velocity will be changed.

The limit of linear theory for resonant Alfvén waves in space plasmas was considered in Chap-
ter 4. Nonlinear theories of resonant absorption have mainly dealt with the slow resonance be-
cause slow waves are more affected by nonlinearity despite the fact that Alfvén waves are more
likely to contribute to the process of heating. In Chapter 4, we investigated whether a nonlin-
ear theory (similar to that produced for the slow resonance) could be derived in an isotropic or
anisotropic dispersive plasma. It was found that a nonlinear theory could not be produced (using
the standard method) and that dispersion due to Hall currents is negligible. We went on to esti-
mate the upper limit for the applicability of linear theory of resonant Alfvén waves and we found
that, in all space plasmas, linear theory is an accurate approximation provided that the dimen-
sionless amplitude of variables far away from the resonance satisfies the condition ϵ ≪ R

−1/3
a

(where Ra is the total Reynolds number at the Alfvén resonance). We accomplished the task by
showing that the nonlinear corrections are always much smaller than the linear approximation
and, in addition, the second order corrections are magnetoacoustic in nature and, therefore, are
not resonant. If it were assumed that ϵ ≥ R

−1/3
a , our approach would become invalid and a new

technique would be required. The most important conclusion of Chapter 4 was that the well-
known linear theory is always applicable to resonant Alfvén waves in space plasmas when the
incoming wave dynamics is described by linear theory far away from the resonance (otherwise
the full nonlinear MHD equations have to be solved over the entire domain).

Chapter 5 was aimed to study the mean shear flows generated by nonlinear resonant Alfvén
waves. Even though the wave dynamics at the Alfvén resonance are governed by linear theory,
nonlinearity has a second manifestation which is the generation of a mean shear flow parallel
to the magnetic surfaces outside the dissipative layer. The characteristic velocity of the flow is
proportional to ϵ1/2 where ϵ is the dimensionless amplitude of perturbations far from the reso-
nant surface. The jumps in the derivative of velocity parallel and perpendicular to the ambient
magnetic field are derived in explicit form. The mean shear flow can create a Kelvin–Helmholtz
instability (KHI) at the dissipative layer which would be in addition to the KHI that might exist
due to the velocity field of the resonant Alfvén waves. The results of Chapter 5 have to be used
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with caution when applied to the solar atmosphere because in deriving the mean shear flows we
assumed that the plasma is homogeneous and infinite outside the dissipative layer when neither
is a truly accurate description.

In Chapter 6 we devoted our time to the nonlinear resonant absorption of fast magnetoacous-
tic (FMA) waves in strongly anisotropic and dispersive plasmas. We employed the governing
equations and jump conditions across the resonances derived in Chapters 3 and 4. The equilib-
rium consisted of an inhomogeneous region sandwiched between two semi-infinite regions of
homogenous plasmas. In order to make the problem mathematically tractable, there were two
important assumptions made in Chapter 6, the first was that the width of the inhomogeneous
region was thin in comparison to the wavelength of the incoming FMA wave, i.e. we employed
the so-called long wavelength approximation (kx0 ≪ 1) which enabled us to neglect terms of the
order of k2x2

0 or larger. The second main assumption is that nonlinearity is weak, i.e. dissipation
dominates nonlinearity (and dispersion) and a regular perturbation technique was used when
dealing with nonlinear terms. These assumptions allowed us to to find analytical solutions to the
governing equations. The weak nonlinear solution inside the slow dissipative layer was found
and can be considered to be a small correction to the linear result. In the first order approximation
the fundamental mode of the reflected wave was found, in the second order approximation terms
were of the order of k2x2

0 so were neglected, while in the third order approximation we found a
correction to the fundamental mode due to nonlinearity and dispersion. Finally, we obtained that
even higher order approximations resulted in non-monochromatic harmonics, and therefore were
neglected. At the Alfvén resonance the solution to the governing equation is found in terms of the
fundamental mode. We then found the coefficient of wave energy absorption at both the slow and
Alfvén resonance (separately). The coefficient at the slow resonance has a small nonlinear correc-
tion which decreases the overall absorption in comparison to the linear absorption coefficient. In
the final section of Chapter 6 we, briefly, investigated the effect of equilibrium flows on the coef-
ficient of wave energy absorption. The result of the equilibrium flows considered was a Doppler
shifted phase velocity included in the definition of the coefficient of wave energy absorption.

Chapter 7 focuses on the numerical analysis of the resonant absorption of FMA waves due
to coupling into the slow and Alfvén continua. The assumptions used in Chapter 6 were also
applied to Chapter 7. The long wavelength assumption gives the additional benefit that the slow
and Alfvén resonance are close enough together to produce a coupled resonance (an Alfvén res-
onance followed by a slow resonance that can both interact with the incoming wave). We also
had to impose a further condition that equilibrium quantities inside the inhomogeneous layer are
monotonic increasing functions which, although not fully realistic, made the problem tractable
from a mathematical point of view. We derived the coefficient of wave energy absorption at a
so-called coupled resonance. We showed that the outgoing (reflected) wave from a coupled reso-
nance has both slow and Alfvén contributions, however, these components cannot be decoupled.
We modelled the interaction of EIT waves with coronal loops and found that the interactions can
produce efficient resonant absorption, however, the absorption is very dependent on the angle
of inclination of the impinging wave (φ) and the angle of inclination of the ambient magnetic
field (α). We also modelled chromospheric absorption using coupled resonances. We showed
that coupled resonances produce more efficient absorption than the two single resonances alone,
however, under the conditions considered, the absorption rate is still fairly low. The absorption
coefficient is again heavily dependent on the variables α and φ.
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8.2 Further possible research on nonlinear resonant waves
The present Thesis has answered some important unresolved problems within the realm of res-
onant absorption. While solving the problems contained within the present Thesis we have un-
covered more questions that still need answering. In our analysis we intentionally overlooked
a few facts in order to make the analytical analysis tractable, however, the omitted ingredients
could play an important role. The research presented in the Thesis could be expanded along the
following lines.

The investigations presented in Chapters 3 and 4 completed the governing equations for res-
onant slow and Alfvén waves in a one-dimensional planar plasma using the single-fluid approx-
imation. To extend this work we would have to do one (or combination) of the following:

• Calculate the governing equations when there is a slight dependence on the y−coordinate,
such that the problem becomes quasi-2D. The addition of a small dependence on y would
allow the wave to take more than a plane polar shape and would provide a more accurate
description of waves in the solar atmosphere. The role of the dependence is unclear, but
warrants investigation.

• Derive the nonlinear governing equations for the slow and Alfvén resonance using the two-
fluid approximation which would result in separate equations for the electrons and protons.
The investigation would have to establish which scale is larger: dissipation or inertia. If the
scale of dissipation is larger than the scale of inertia then the single-fluid approximation is
adequate, however, if the converse is true we need a two-fluid approximation. Some work
has been carried out on two-fluids with regards to ULF pulsations in the Earth’s magneto-
sphere by, e.g. Wright and Allan (1996) where it was shown that the scales of dissipation
and inertia play a vital role in determining the effects of a two-fluid approximation.

• Produce an analytical nonlinear theory for resonant Alfvén waves where the waves inside
the dissipative layer can have a large amplitude (and small amplitude far away from the
resonance) and not cause a breakdown in the validity of the approach taken. The new
theory would be a more realistic model of the solar atmosphere.

The results of Chapter 5 provide an insight into the generated mean shear flow outside the
dissipative layer. Similar work was carried out for the slow resonance by, e.g. Ruderman et al.
(1997d). Possible extensions of this work are:

• Calculate the generated mean shear flow at the slow and Alfvén resonance in a two-fluid
approximation. The two-fluid approximation could cause different flows for the ions and
electrons.

• Derive the governing equations for the generated mean shear flow in a two-dimensional
topology. The extra degree of freedom could create additional effects not yet discovered,
clearly shown by solar wind measurements.

Chapters 6 and 7 calculated the wave energy absorption of monochromatic waves at the slow,
Alfvén and the introduced coupled resonances. The work could be continued by:

• Extend the limits of validity to include the short and intermediate wavelength approxima-
tions and discover how this would affect the coefficient of wave energy absorption.
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• Have a non-monotonic function for equilibrium quantities inside the inhomogeneous re-
gion. The function would need to be simple and smooth enough to allow mathematical
tractability, but more realistic than the model presented.

• Have a non-monochromatic wave impinging on the inhomogeneous layer. The non-monochromatic
wave is a far more realistic model for waves present in the solar atmosphere.

• Significant work should be focussed on the timescales for the development (and longevity)
of resonant layers. The work would show whether or not the coupled slow and Alfvén
resonances can supplement heating in the solar chromosphere.

• Further research should take into account the effect of mean shear flows produced by the
velocity field of resonant Alfvén waves and by considering nonlinearity (as well as equilib-
rium flow effects) on the dissipative layer when investigating resonant absorption.

The further research proposed here is work that will extend the envelope on the theory of
resonant absorption and if carried out would determine the feasibility of resonant absorption as
a supplementary heating source for the solar corona.
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A
The derivation of the Hall term in the

induction equation for resonant slow and
Alfvén waves in dissipative layers

In this appendix we will derive the components of the Hall term in the induction equations and
study the conditions under which this extra effect is important. The parallel component of the
magnetic field perturbation dominates the other components in the slow dissipative layer. In
contrast, in the Alfvén dissipative layer the perpendicular component of the magnetic field per-
turbation dominates the other components. When studying resonant slow waves we find that the
Hall term contains the first derivative of this parallel component of the magnetic field perturba-
tion with respect to z, whereas the first term of Braginskii’s viscosity tensor contains the second
derivative of the parallel component of the magnetic field perturbation with respect to z. As a
result the Hall term can be of the same order or larger than the dissipative term when considering
resonant slow waves in the anisotropic dissipative layer.

For resonant Alfvén waves the situation is different; we will show that it is a good approxima-
tion for typical conditions throughout the solar atmosphere to neglect the Hall conduction when
investigating resonant Alfvén waves. The main reasons qualitatively are as follows. When we are
in the lower solar atmosphere (e.g. solar photosphere) the Hall conduction is much smaller than
the direct conduction since the product of the electron gyrofrequency (ωe) and collision time (τe)
is less than unity (see, e.g. Priest, 1984). For the upper atmosphere (e.g. chromosphere, corona),
where the product ωeτe is greater than unity, the Hall conduction has to be considered. How-
ever, when the Hall terms are derived, the largest terms in the perpendicular direction relative to
the ambient magnetic field cancel leaving only higher order approximation terms which are far
smaller than the direct conduction and since the dominant dynamics of resonant Alfvén waves in
dissipative layer resides in the components of velocity and magnetic field perturbation in the per-
pendicular direction relative to the background magnetic field we can neglect the Hall conduction
completely from the analysis without affecting the governing equation.

The generalized Ohm’s law including the Hall term can be written as (see, e.g. Priest, 1984;
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Clack and Ballai, 2008)
E = −v× B+

1

σ̃
j+ 1

ene
j× B, (A-1)

where E is the electric field, j the density of the electrical current, ne the electron number density,
e the electron charge and σ̃ the electrical conductivity. Here the electrical conductivity is given by

σ̃ =
nee2m−1

e

τ−1
e + τ−1

n
, (A-2)

with me the electron mass, τe the electron collision time and τn the neutral collision time. The
density of electrical current and magnetic induction (B) are related by Ampére’s law

j =
1

µ0
∇× B, (A-3)

For a fully-ionized, collision-dominated, plasma Eq. (A-2) reduces to

σ̃ ≈ nee2τe

me
, (A-4)

with, in accordance to Spitzer (1962), the electron collision time being

τe = 2.66 × 105 T3/2

ne ln Λ
s, (A-5)

where T is the temperature and ln Λ is the Coulomb logarithm (here taken to be 22). From Eq.
(A-5), τe changes from 9.4 × 10−8s in the upper photosphere to 1.4 × 10−2s in the solar corona.
On the other hand, ωe changes from 1.8×1010s−1 in the upper photosphere to 1.8×108s−1 in the
solar corona. As a consequence the Hall parameter (ωeτe) changes from 1.69 × 103 in the upper
photosphere to 2.52×106 in the solar corona. Since ωeτe ≫ 1, the Hall term cannot be completely
neglected in the upper photosphere nor the solar corona for either the resonant slow or Alfvén
waves.

In the slow dissipative layer, Hall conduction and compressional viscosity dwarf the direct
conduction, so we estimate the relative importance of the Hall term to the compressional viscous
term. In the case of the Alfvén dissipative layer, shear viscosity and direct conduction are of the
same order of magnitude. Hence, we compare the relative importance of the Hall conduction to
the direct conduction. To do this we employ a more sophisticated analysis similar to the analysis
presented by, e.g. Ruderman et al. (1997d); Clack and Ballai (2008); Clack et al. (2009b). The
generalized induction equation (including Hall and direct conduction) is

∂B
∂t

= ∇× (v× B) + η∇2B +
1

µ0e
∇×

(
1

ne
B×∇× B

)
. (A-6)

In what follows we assume that the ionization coefficient is constant, so that ne is proportional
to ρ, and in particular n−1

e ∇ne = ρ−1∇ρ. Equations (3.19) and (3.39) provide the following
estimations in the slow dissipative layer:

u = O(ϵ), v⊥ = O(ϵ), ρ = O(ϵ1/2), v∥ = O(ϵ1/2), b∥ = O(ϵ1/2), (A-7)

where ϵ still denotes the dimensionless amplitude of oscillations far away from the slow dissipa-
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tive layer. Similarly, Eqs (3.19) and (3.39) provide the following estimates in the Alfvén dissipative
layer:

u = O(ϵ), bx = O(ϵ), b∥ = O(ϵ), v∥ = O(ϵ), v⊥ = O(ϵ1/2), b⊥ = O(ϵ1/2). (A-8)

The thickness of the dissipative layers divided by the characteristic scale of inhomogeneity is
δc/linh = δa/linh = O(ϵ1/2). This gives rise to

linh
∂π

∂x
= O(ϵ−1/2π), linh

∂π

∂z
= O(π), l2inh

∂2π

∂z2
= O(π), (A-9)

where π denotes any of the quantities; u, ρ, v∥, b∥ in the slow dissipative layer; or u, bx, b∥, b⊥,
v⊥ in the Alfvén dissipative layer. Since the first terms in the expansions of b⊥ (and v⊥) in the
slow dissipative layer, and v∥ in the Alfvén dissipative layer, are independent of x it follows that

linh
∂π̂

∂x
= O(π̂), linh

∂π̂

∂z
= O(π̂), l2inh

∂2π̂

∂x2
= O(ϵ−1/2π̂), (A-10)

where π̂ represents b⊥ and v⊥ in the slow dissipative layer and denotes v∥ in the Alfvén dissipa-
tive layer.

We now need to calculate the components of the Hall term from Eq. (A-6) normal to the
magnetic surfaces (the x−direction) and in the magnetic surfaces parallel and perpendicular to
the equilibrium magnetic field lines. We use Eqs (A-9) and (A-10) in order to estimate all the
terms and then we only retain the largest ones. In the slow dissipative layer, the components of
the Hall term in the induction equation reduce to

Hx =
B0 cos α sin α

µ0ene

∂2b∥

∂z2
+ . . . , H⊥ =

B0 cos α

µ0ene

∂2b∥

∂x∂z
+ . . . ,

H∥ =
B0 sin α

ρ0µ0ene

∂b∥

∂z

∂ρ

∂x
+ . . . . (A-11)

Whereas, in the Alfvén dissipative layer the largest components of the Hall term in the induction
equation are

Hx =
B0 cos2 α

µ0ene

∂2b⊥

∂z2
+ . . . , H∥ = −

B0 cos α

µ0ene

∂2b⊥

∂z∂x
+ . . . ,

H⊥ =
B0

µ0ene

(
1

B0

dB0

dx

∂bx

∂x
+ cos α

∂2b∥

∂z∂x

)
+ . . . , (A-12)

where the dots indicate terms much smaller than those shown.

To find the relative importance of the Hall conduction we must find the largest terms of Bra-
ginskii’s viscosity tensor (for the slow dissipative layer) and the largest terms of the direct conduc-
tion tensor (for the Alfvén dissipative layer). The dominant components of the Braginskii tensor
acting in the normal and perpendicular directions relative to the equilibrium magnetic field are
the second and third ones (describing shear viscosity). Since they are of the same order, for the
purpose of our estimations it is enough to consider η1 only. Braginskii’s viscosity tensor, in the
slow dissipative layer, simplifies to (see derivation in Appendix B)

η1(∇ · S1)x = η1
∂2u

∂x2
+ . . . , η1(∇ · S1)⊥ = η1

∂2v⊥
∂x2

+ . . . ,



150
APPENDIX A. THE DERIVATION OF THE HALL TERM IN THE INDUCTION EQUATION
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η0(∇ · S0)∥ = η0 cos α

(
2 cos α

∂2v∥

∂z2
−

∂2u

∂x∂z

)
+ . . . . (A-13)

It should be stated that η0 ≫ η1 and η0(∇ · S1)x = η0(∇ · S1)⊥ = 0. We now need to calculate the
components of the vector of the resistive term. We use Eqs (A-9) and (A-10) in order to estimate
all the terms and we only retain the largest ones. As a result we have

η∇2Bx = η
∂2bx

∂x2
+ . . . , η∇2B∥ = η

∂2b∥

∂x2
+ . . . , η∇2B⊥ = η

∂2b⊥

∂x2
+ . . . . (A-14)

With the aid of Eqs (A-7), (A-9) and (A-10) we obtain, for the slow dissipative layer, the ratios

Hx

η1(∇ · S1)x
∼ ϵ1/2 χ

η1
,

H⊥

η1(∇ · S1)⊥
∼ ϵ−1/2 χ

η1
,

H∥

η0(∇ · S0)∥
∼

χ

ρ0η0
, (A-15)

where χ = ηωeτe is the coefficient of Hall conduction and η = (σ̃µ0)−1 is the magnetic diffusiv-
ity. Strictly speaking, even the diffusivity is anisotropic in the solar corona, but the parallel and
perpendicular components only differ by a factor of 2. It has been noted that magnetic diffusivity
is much much smaller that the compressional viscosity in the solar corona. However, in the coef-
ficient of Hall conduction (χ = ηωeτe) we observe that the magnetic diffusivity is multiplied by
the product ωeτe, which is very large in the solar corona (104 − 106). Moreover, if we look at the
parallel component of Eq. (A-15) we see that the coefficient of Hall conduction is divided by the
density, which is very small under solar coronal conditions. Therefore, the parallel component of
the Hall term in the induction equation becomes very important in the slow dissipative layer. The
Hall terms in the normal and perpendicular direction relative to the background magnetic field
are included here for completeness, but they do not play a role in the equation governing resonant
slow waves (i.e. can be left out completely and will not alter the result shown). This is attributed
to the fact that the dominant dynamics of resonant slow waves is in the parallel direction relative
to the ambient magnetic field.

Using Eqs (A-8)–(A-10) we obtain, for the Alfvén dissipative layer, the ratios

Hx

η∇2Bx
∼ ϵ1/2ωeτe,

H∥

η∇2B∥
∼ ωeτe,

H⊥

η∇2B⊥
∼ ϵωeτe. (A-16)

For the Hall conduction to be significant in the direction of the dominant dynamics of resonant
Alfvén waves (i.e. in the perpendicular direction) we must have ϵωeτe ! 1. This is plausible for
the solar upper atmosphere. If this condition holds, then we must consider the Hall term in the
induction equation. However, if the perpendicular component of Eq. (A-16) is expanded using
Eq. (3.19), we obtain

ϵ3/2η

⎧
⎨

⎩
1

B0

(
dB0

dx

)
∂b

(1)
x

∂ξ
+ cos α

∂2b
(1)
∥

∂θ∂ξ

⎫
⎬

⎭ + O(ϵ2). (A-17)

It should be noted that in deriving Eq. (A-17) we have used the assumption that ϵωeτe = O(1).
The terms inside the braces are of the same order as the direct conduction. Hence, they would
be expected to appear in the governing equation. When substituting for b

(1)
x and b

(1)
∥ using Eqs
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(4.17) and (4.18), respectively, it is found that the terms inside the brackets cancel in the form

cos α

V

(
dB0

dx

)
∂u(1)

∂ξ
−

cos α

V

(
dB0

dx

)
∂u(1)

∂ξ
= 0. (A-18)

Equation (A-18) shows that the Hall term in the perpendicular component of induction is always
smaller than the direct conduction in the solar atmosphere. The normal and parallel components
of the Hall conduction are, in fact, larger than the perpendicular component. Nevertheless they
play no role in derivation of the governing equation of resonant Alfvén waves in dissipative layer.
The parallel component is the largest of the three components and this is to be expected as the
Hall effect is strongest at right angles to the dominant wave motion. This is in complete agreement
with Eq. (A-15) which found the largest Hall effect was in the perpendicular component of Hall
conduction, which is at right angles to the dominant dynamics of resonant slow waves.

In summary, for resonant Alfvén waves in dissipative layers, it is a good approximation to
neglect the Hall term in the induction equation. This approximation holds throughout the entire
solar atmosphere. On the other hand, we have shown for resonant slow waves in dissipative lay-
ers that the Hall term in the parallel direction relative to the ambient magnetic field (H∥) must be
included when ωeτe ≫ 1 because it is the same order of magnitude (or larger) than the compres-
sional viscous term.
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B
Braginskii’s viscosity tensor and the

derivation of largest terms

In this Appendix, we shall derive the largest terms of Braginskii’s viscosity tensor when study-
ing resonant slow and Alfvén waves inside anisotropic dissipative layers. Braginskii’s viscosity
tensor comprises of five terms. Its divergence can be written as (see, e.g. Braginskii, 1965)

∇ · S = η0∇ · S0 + η1∇ · S1 + η2∇ · S2 − η3∇ · S3 − η4∇ · S4, (B-1)

We should stress that the terms proportional to η0, η1 and η2 in Eq. (B-1) describe viscous dissipa-
tion, while terms proportional to η3 and η4 are non-dissipative and describe the wave dispersion
related to the finite ion gyroradius, therefore, they will be ignored in what follows.

The quantities S0, S1 and S2 are given by Eqs (2.23)–(2.25). The first viscosity coefficient (η0)
has the following approximate expression (see, e.g. Ruderman et al., 2000)

η0 =
ρ0kBT0τi

mp
, (B-2)

where ρ0 and T0 are the equilibrium density and pressure, mp is the proton mass, kB the Boltz-
mann constant and τi the ion collision time. The other viscosity coefficients depend on the quan-
tity ωiτi, where ωi is the ion gyrofrequency. When ωiτi ≫ 1 the coefficients in Eq. (B-1) are
given by the approximate expressions

η1 =
η0

4 (ωiτi)
2
, η2 = 4η1. (B-3)

The viscosity described by the sum of the second and third terms in Eq. (B-1) is the shear
viscosity. For typical coronal conditions ωiτi is of the order of 105 − 106, so according to Eq.
(B-3) the term proportional to η0 in Eq. (B-1) is much larger than the second and third terms.
This is true for the slow resonance, however, it has been long understood that the compressional
viscosity does not remove the Alfvén singularity (see, e.g. Erdélyi and Goossens, 1995; Mocanu
et al., 2008; Clack et al., 2009b) while shear viscosity does.
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LARGEST TERMS

First, we shall calculate the components of the compressional viscosity. We will use the no-
tation of parallel and perpendicular components as defined in Sect. 2.7. It is straightforward to
obtain that

η0 (∇ · S0)x = 0, η0 (∇ · S0)⊥ = 0, (B-4)

η0 (∇ · S0)∥ = η0 cos α

(
2
∂2v∥

∂z2
cos α −

∂2u

∂x∂z
+

∂2v⊥
∂z2

sin α

)
. (B-5)

The shear viscosity, as stated above, is the sum of the second and third terms of Eq. (B-1). To
evaluate these terms we use the approximate expression for η1 and η2 given by Eq. (B-3). As a
result we obtain

η1 [(∇ · S1)x + 4 (∇ · S2)x] = η1

[
∂2u

∂x2
+ (1 + 3 cos2 α)

∂2u

∂z2
+ 4

∂2v∥

∂x∂z
cos α

]
, (B-6)

η1 [(∇ · S1)⊥ + 4 (∇ · S2)⊥] = η1

[
∂2v⊥
∂x2

+
(
4 − 3 sin2 α − 16 sin6 α

) ∂2v⊥
∂z2

+4 sin α cos α
(
4 sin4 α − 1

) ∂2v∥

∂z2

]
, (B-7)

η1

[
(∇ · S1)∥ + 4 (∇ · S2)∥

]
= 4η1

{
∂2v∥

∂x2
+
[
1 + cos2 α

(
4 sin4 α − 1

)] ∂2v∥

∂z2

+
∂2u

∂x∂z
cos α −

(
4 sin4 α + 1

) ∂2v⊥
∂z2

cos α sin α

}
. (B-8)

Equations (B-4)–(B-8) are complicated, but we can simplify them further by taking the largest
term only in each equation.

When studying resonant slow waves we can take the largest term proportional to η0 for the
parallel direction, and the largest terms from Eqs (B-6) and (B-7), as the compressional viscosity
in the normal and perpendicular directions are zero. This results in Braginskii’s viscosity tensor,
at the slow resonance, being approximated to

(∇ · S)x ≈ η1

(
∂2u

∂x2
+ 4

∂v∥

∂x∂z
cos α

)
, (B-9)

(∇ · S)⊥ ≈ η1

[
∂2v⊥
∂x2

+ 4 sin α cos α
(
4 sin4 α − 1

) ∂2v∥

∂z2

]
, (B-10)

(∇ · S)∥ ≈ 2η0

∂2v∥

∂z2
cos2 α. (B-11)

Even though Eqs (B-9) and (B-10) look complicated they appear for completeness. Since the dom-
inant dynamics of resonant slow waves resides in the components of velocity and magnetic field
perturbations parallel to the ambient magnetic field we can set (∇ · S)x = (∇ · S)⊥ = 0 without
loss of generality.

At the Alfvén resonance, the viscosity in the parallel direction it would, at first, seem obvious
that the largest term will be proportional to η0 rather than η1. However, some of the variables
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proportional to η1 have derivatives with respect to x which produce enormous gradients in the
anisotropic Alfvén dissipative layer when there is a transversal inhomogeneity, hence some of the
terms proportional to η1 are of the same order as or larger than the terms proportional to η0. It
is also important to note that in the first order approximation the second and third terms on the
right-hand side of Eq. (B-4) cancel [see Eq. 4.20]. For the normal and perpendicular components of
viscosity, the treatment is slightly simpler. The compressional viscosity is zero, and as derivatives
with respect to z are much small that derivatives with respect to x, we can select the largest term
proportional to η1 by observation. Therefore, the viscosity tensor, at the Alfvén resonance, can be
approximated by

(∇ · S)x ≈ η1
∂2u

∂x2
, (∇ · S)⊥ ≈ η1

∂2v⊥
∂x2

, (∇ · S)∥ ≈ 4η1

∂2v∥

∂x2
. (B-12)

Equations (B-9)–(B-11) give an appropriate approximation to Braginskii’s viscosity tensor when
studying nonlinear resonant slow waves in anisotropic dissipative layers and Eq. (B-12) is the ap-
propriate approximation to Braginskii’s viscosity tensor when investigating nonlinear resonant
Alfvén waves in anisotropic dissipative layers. It is interesting to note that the terms in Eq. (B-12)
are identical to the largest terms when considering isotropic viscosity. Obviously, compressional
viscosity cannot remove the Alfvén singularity since Eq. (B-4) is identically zero.


