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The planning and design of an electric power system, including high-voltage direct-current transmission,
is a complex optimization problem. The optimization must integrate and model the engineering require-
ments and limitations of the generation, while simultaneously balancing the system electric load at all
times. The problem is made more difficult with the introduction of variable generators, such as wind
and solar photovoltaics. In the present paper, we introduce two comprehensive linear programming tech-
niques to solve these problems. Linear programming is intentionally chosen to keep the problems trac-
table in terms of time and computational resources. The first is an optimization that minimizes the
deviation from the electric load requirements. The procedure includes variable generators, conventional
generators, transmission, and storage, along with their most salient engineering requirements. In addi-
tion, the optimization includes some basic electric power system requirements. The second optimization
is one that minimizes the overall system costs per annum while taking into consideration all the aspects
of the first optimization. We discuss the benefits and disadvantages of the proposed approaches. We
show that the cost optimization, although computationally more expensive, is superior in terms of opti-
mizing a real-world electric power system. The present paper shows that linear programming techniques
can represent an electrical power system from a high-level without undue complication brought on by
moving to mixed integer or nonlinear programming. In addition, the optimizations can be implemented
in the future in planning tools.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

An electric power system is a complex web of power generators,
transmission and distribution lines, a small amount of storage, and
power consumers, which must be kept in dynamic equilibrium.
The electric power generated on the system at any one instance
must be consumed somewhere at the same instant. The historical
design of electric power systems is an ad hoc method of addition as
needed. A description of electric power systems can be found in,
e.g., [1,2]. The ad hoc nature of electric power system growth
and regeneration can lead to system weaknesses, which can ham-
per further growth of new generation and transmission. The elec-
tric power system design is an ideal candidate for mathematical
optimization. There already exists research into different optimiza-
tion schemes for different aspects of the power system. The
research ongoing has wide ranging interests from the optimization
of asset scheduling to power flow optimization across a network,
for a selection of related optimizations and overviews see, e.g.,
[3–6].

The optimization of electric power systems becomes even more
difficult with the addition of renewable generators, such as wind
turbines and solar photovoltaic (PV) cells. The optimization must
take into consideration the variable nature of these relatively
new forms of power. In recent years, the optimization of wind,
solar, and conventional generator systems has attracted strong
research. Much of the attention in the research has been to con-
sider high penetration levels of wind and solar PV deployment in
the electrical power system, see e.g., [7–11], which is what we con-
sider in the present paper. The variable nature of wind and solar
resources implies that for an optimization to be an effective
planning tool for electric power systems it must consider large
geographic areas, with high-temporal and -spatial resolution
discretization.

Since numerous objectives exist in the mathematical optimiza-
tion of an electric power system with wind and solar PV electrical
generation plants, one has to choose what is meant by an optimal
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system. For example, in [7,8] an energy balance optimization was
performed whereby the amount of energy produced in a given time
is balanced by the energy consumed in the same time interval.
Unfortunately from an electric power system perspective, the opti-
mal system that can generate enough power, but not at the correct
times is not effective in the real world. The optimization of [7,8]
describes only that wind and solar power can help in an electrical
power system, but not to what extent. The procedure carried out
by [9] is based upon the Ordinary Least Squares (OLS) and Regular-
ized Least Squares (RLS) procedures, see e.g. [12–16], and it finds
an optimal solution with respects to matching the electric load at
every time step throughout the time interval studied.

The load-matching procedure set out in [9] is novel, but
incomplete and incorrect in certain areas, and thus we set out a
new formulation in the present paper. The optimization in [9]
has the real-world drawback of possibly being extremely ineffi-
cient in terms of cost. The methods adopted in [10,11] are both
defined as cost-minimization. The former developed a procedure
to look at policy implications with growing the variable resource
under numerous constraints. The latter performs an iterative
approach to the cost-minimization and attempts to search the
solution space via discretization. The cost-minimization tech-
nique is the most appropriate for real-life decision-making. In
the present paper, we develop a unique cost optimization proce-
dure that designs a wind, solar PV (or any other variable genera-
tor) and conventional electricity power generation system, while
simultaneously designing a HVDC transmission system and
deploying storage capabilities.

The purpose of the present paper is to derive two mathematical
optimizations that consider the electric power system as a whole,
which can be applied to any desired system. The variable and con-
ventional generators, the transmission, the storage, and the electri-
cal demand all need to be modeled in the optimization to create
the most realistic system. In reviewing the literature, we did not
find a single optimization procedure that performed the modeling
of the electric power system holistically. The present paper
describes a load-matching procedure and a cost-minimizing proce-
dure. Both optimizations include all of the fundamental character-
istics of an electric power system, however, by necessity, they
cannot include every single, small, technical detail of a complete
system. We develop both the load-matching and cost optimization
procedures because it is informative to know to what extent wind
and solar PV power can contribute to an electric power system,
with and without the constraints of cost. We test the codes on a
sample system to demonstrate its capabilities. The mathematical
optimizations are designed to be used on large geographic-scale
electric power systems at a high-temporal and -spatial resolution.
The procedures were intentionally designed to be linear program-
ming and not to be nonlinear programming. Choosing LP rather
than NLP was done by transforming the problems while retaining
all the salient features. In addition, the choice allows for large
problems to be solved in a tractable amount of time and computa-
tion resources.

The layout of the present paper is as follows: Section ‘Electrical
load-matching technique’ develops a load-matching mathematical
linear programming technique for fast and efficient design of large-
scale electric power systems, the section includes descriptions of
each modeled parameter and its importance. Section ‘Cost minimi-
zation technique’ describes a mathematical cost optimization for
large-scale electric power systems and discusses the important
features of the procedure. In Section ‘Example test case’, we show
a sample execution of the two mathematical optimizations on a
relatively small data set. Finally, in Section ‘Discussion and conclu-
sions’, we discuss the benefits and disadvantages of the procedures
and the most efficient methods to use when deploying the models
using GAMS/Cplex software [17].
2. Electrical load-matching technique

The technique of load-matching is to find, from a geometric
perspective, the shortest total distance between all of the electric-
ity generation and the electricity demand at each time instance
over a specified time interval (usually a day, week, month, or
year). To cast this problem effectively in a Linear Programming
(LP) framework, we define the objective function as the sum of
excess generation, backup generation, electrical losses due to
transmission to consumers, and losses from moving electricity
between the grid and storage. We then bound the objective func-
tion with linear constraints to ensure that the electric demand is
met at every time step, the storage is charged and discharged at
an appropriate rate, the transmission is constructed as necessary,
the backup generation increases and decreases output (ramps)
within technical bounds and the (variable) generation plants are
not overbuilt.

The minimization problem modeled in the present paper is
designed for wind- and solar- dominated systems, however, the
methodology can be used, in principle, for optimizing any electric-
ity generation system. It is already well known that all LP problems
can be written in the standard (slack) form [18]

minimize f ðxÞ , cTx; ð1Þ

subject to Ax ¼ b; x P 0; ð2Þ

where fcjg 2 Rn; fxjg 2 Rn; fAijg 2 Rm�n, and fbig 2 Rm. For the sake
of brevity, we drop the fg notation for the remainder of the present
paper. The coefficients in Eq. (1) are known as the costs or weight-
ing factors for each of the primary endogenous variables. The coef-
ficients in Eq. (2) are usually known, or should be calculable from
other constraints. For computational efficiency the LP methods set
out in the present paper are written in the most appropriate form
for compilation by the solvers. We have shown the standard form
for reference to check against to make sure the model created does
not become infeasible due to conflicting constraints.

The load-matching optimization developed in the present paper
can be written as
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Eqs. (3)–(16) are mathematically equivalent to Eqs. (1) and (2), but
describe the details of the modeled behavior of an electric power
system. These equations should be supplemented with three more
equations that pertain to limiting the amount of dispatchable gen-
eration, storage and transmission that can be built (equivalent to
Eq. (14) for variable generators). If the limits are not placed the sys-
tem could construct overly large conventional generation, transmis-
sion and storage facilities at single sites. The equations are

Cg
l 6 Ug

l; ð17Þ

Cs
l 6 U s

l; ð18Þ

T âb̂ 6 U t
âb̂: ð19Þ

The upper bounds from Eqs. (17)–(19), are user-defined and could
be the existing amounts of conventional generation, storage and
transmission in an electric power system. Without Eqs. (18) and
(19), the optimization would find a feasible minimum that uses
no dispatchable generation, because it can build the storage and
transmission lines to any value to accommodate all the excess
energy required to compensate for low variable generation times
and then ship the power over the domain via the transmission capa-
bilities (depending on the rate of change of output of technologies
and electrical losses modeled). The extra constraints are partly
caused by the fact that the variable generation does not appear
explicitly in the objective function. A summary of all the variables
and equations can be found in Appendix A.

It is instructive to go through all of the equations and define
their roles along with the meaning of each parameter contained
within each equation. In Eqs. (3)–(16), all the variables (exogenous
and endogenous) have subscripts, which means that there is, in
principle, a different value for each subscript. Eq. (16) shows all
the different subscripts and their sets. The set N contains all the
nodes in the optimization (a node is a region within the domain
that is only connected to other nodes by HVDC transmission lines
calculated by the optimization), the set B contains all the possible
site locations for variable generation plants, the set V contains all
the possible variable generation types (e.g. wind, solar PV) and
finally the set Q contains all the time steps to be optimized over.
The endogenous variables in Eqs. (3)–(14) are: the installed capac-
ity of variable generation (x/j), the dispatchable generation used
(gls), the electrical power extracted from storage (si

ls), the electri-
cal power injected into storage (so

mus), the electrical power curtailed
(cls), the value of all the heads and tails of arcs in the transmission
network (T abs), the transmission capacity constructed (T âb̂), the
amount of energy stored (Ŝls), the capacity of storage constructed
(Cs

l), and the capacity of dispatchable generation constructed (Cg
l).

All other variables in Eqs. (3)–(15) are exogenous and will be
explained in the description of each of the equations. A concise
explanation of all equations can be found in Table A.8.
Eq. (3) is the objective function and it is minimizing the sum of
the dispatchable generation (gls), the round trip electrical losses
associated with injection and extraction of power from storage
(Lts

l � so
ls � Lfs

l � si
ls), and the electric power curtailed (cls) over all

the nodes (l 2 N ) and time steps (s 2 Q) along with the sum of
the electrical losses due to transmission (1=2 � Ltr

ab �Dab � T abs) over
all possible arcs (a; b 2 N ;a – b) and time steps. The factor of 1=2
in front of the electrical losses due to transmission term is to com-
pensate for the matrix including duplication. The cost coefficients
in the objective function here are the terms in front of the endog-
enous variables; namely the loss terms for the storage and trans-
mission terms and unity for the dispatchable generation and
curtailment. The cost coefficients could be supplemented with
additional terms that would vary the penalization of the associated
term. For example, if the electrical losses due to transmission had a
multiplicative cost coefficient of p ¼ 10 the cost of transmission in
the objective term would be ten times large resulting in far less
transmission being installed. This was not done, because the trans-
mission and storage use is preferred to a mismatch of the electric
load. The exogenous variables denoted by L are electrical losses
(defined in percentages per unit) and, in particular Lts;Lfs;Lrs,
and Ltr denote losses to storage, losses from storage, loss rates
within storage and transmission losses, respectively. We display
a brief description of all terms in the objective function in
Table A.3.

The most critical constraint is described in Eq. (4); the electrical
load (demand) is met in every node at every time step without fail.
The variables in Eq. (4) are restricted or controlled by the remaining
constraints [Eqs. (5)–(15)]. Eq. (4) states that in every node and at
every time step the variable generation [

P
/

P
j b/l � x/j � r/js
� �

] plus
the dispatchable generation (gls) plus the electricity transmission
flux (tls) plus the net electrical energy extraction from storage

[ð1� Lfs
lÞ � si

ls] minus the electrical energy injection to storage

[ð1þ Lts
lÞ � so

ls] minus electrical energy curtailment (cls) must bal-
ance the electrical load (Lls). The exogenous variable r/js is the real-
izable electric power from variable generation sources (j 2 V) at
each viable resource site (/ 2 B) at each time step. The variable
r/js also includes an approximation of electrical power losses due
to transmission from the resource region to the node center, where
the majority of the electric load resides. The term b/l is simply a bin-
ary filter to allow the optimization to determine which resource site
belongs in which node. Due to the importance of the load following
term, we have a table (Table A.4) to describe the terms within it and
the linking terms to the transmission network in Appendix A.

Eqs. (5) and (6) bound the behavior of the transmission network.
The term on the left-hand side of Eq. (5) also appears in constraint
Eq. (4), and is known as the transmission flux (tls). The transmis-
sion flux term is a free endogenous variable and, as such, can take
positive and negative values. For the purposes of modeling the
transmission network to be constructed, we introduce the concept
of arcs (transmission lines) with heads and tails, for a more detailed
explanation of network optimization theory, we refer the reader to,
e.g., [19–21]. A head represents the power flow out from an arc and
a tail describes the power flow into an arc. The heads and tails are
represented by the columns and the rows of T abs, respectively.
The indices a; b 2 N are dummies that are evaluated at each of
the nodes l. Eq. (5) states that the transmission flux is equal to
the sum of all the heads entering node l multiplied by one minus
the transmission losses encountered [

P
aT abs � ð1� LT

ab �DabÞjb¼l]
minus the sum of all the tails leaving node l (

P
bT absja¼l). The

exogenous variable Dab is the distance matrix containing the length
of each arc between a and b. When the variable tls is positive, the
node is considered (in terms of network optimization) a supply
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node, when its negative, it is considered a sink node and when it is
zero it is considered a transshipment node. The second transmission
constraint endogenously finds the arc capacities (T âb̂) by being
greater than or equal to the heads and tails of each arc at all time
steps (T absja;b¼â;b̂). The arc capacity matrix is a lower triangular
matrix to avoid duplication of arc capacities. The optimization pro-
cedure considers the transmission to be a direct power flow bal-
ance. There is no attempt to mimic the voltage phase shift which
is highly nonlinear. However, the power flow balance approxima-
tion is a reasonable representation for high-voltage direct-current
(HVDC) transmission network at a high level [1]. The use of an
HVDC transmission instead of high-voltage alternating-current
(HVAC) is due to the nonlinear nature of HVAC, which significantly
complicates the optimization. However, the HVDC transmission can
be through of as an approximation of HVAC in terms of power flow
because it includes electrical losses and it describes the transmis-
sion at a high level.

The group of Eqs. (7)–(10) describe the functionality of the elec-
tric storage contained within the optimization. Eq. (7) calculates the

electrical energy stored in any given node at any given time (Ŝls). The
right-hand side of Eq. (7) is the difference between the net electric
power injected into storage minus the power removed from storage
[so

ls � si
ls] plus the remaining stored electrical energy from the pre-

vious time step [ð1� Lrs
l Þ � Ŝlðs�1Þ]. The process is iterative within the

optimization. The optimization assumes that Ŝl0 is zero, but it can be
prescribed before the start of the optimization. The capacity of the
storage contained within each node (Cs

l) is determined by Eq. (8).
It states that the capacity must be greater than or equal to the elec-
tric power injected to storage plus a reserve margin (Rs

l) for all

nodes and time steps [ð1þRs
lÞ � Ŝls]. The amount of electric power

allowed to be injected into storage and removed from storage at
each time step is modeled by Eqs. (9) and (10), respectively. The
exogenous variables SC

l and SD
l are the charge and discharge rates

for storage in each node, which is a percentage of capacity (Cs
l).

Eqs. (7)–(10) all interact directly with each other to model the elec-
tric storage properties. These properties dictate how electric storage
influences the objective function and main constraint Eq. (4). The
storage is modeled assuming it is pumped hydroelectric, where
the cost of the generator is largest component of the cost compared
with the portion of the cost associated with the energy stored. If bat-
tery storage was to be modeled, the left hand side term in (8) would
be the capacity in terms of energy and the right-hand side term

would be Ŝls, thus representing the energy stored being the domi-
nate factor. Storage has an important impact on the optimization;
it allows the system to reduce curtailment at times of over-genera-
tion in large areas, and reduce dispatchable generation in times of
under production all without the use of transmission. This changes
the need for generation and consumption of power at all times to
be synchronized, because the storage can hold electrical energy for
a later time. This is different to transmission that only allows the
shifting of power spatial rather than temporally.

Eqs. (11)–(13) model the attributes of the variable generation in
the optimization procedure. The capacity of the dispatchable gener-
ation is dictated by Eq. (11), which behaves in exactly the same way
as Eq. (8). The capacity (Cg

l) in each node is greater or equal to the dis-
patchable generation plus some reserve requirement (Rg

l). In Eqs.
(12) and (13), the dispatchable generation ramp rates (electric
power output variability) are taken into consideration. Eq. (12)
states that the electric power output from the dispatchable genera-
tion in each node at each time step (gls) must be less than or equal to
the dispatchable output in the node at the previous time step
(glðs�1Þ) plus an allowed up-ramp (Gu

l � C
g
l). In Eq. (13), the
down-ramp is controlled by stating that the generation in each node
at each time step must be greater than or equal to the previous time
step minus an allowed down-ramp (Gd

l � C
g
l). The exogenous

variables Gu
l and Gu

l determine the percentage of up-ramp and
down-ramp allowed per time step, respectively. The terms found
in Eqs. (7)–(13) are collected in Table A.5 for ease of reference.

Eq. (14) sets the upper bound amount of variable generation at
each site. The bounds would have to be determined from available
land areas, topography of the landscape, socio-political
infringements, and multiple other constraints.

The final constraint in Eq. (15) is to enforce a lower bound on
the amount of variable generation to be used in each node
(
P

/

P
j
P

sb/l � x/j � r/js). The right-hand side term determines
the percentage (Pl) of the total electric load (

P
sLls) to be met

by variable generation, which can be different for every node l.
The remaining terms for the optimization are collated in Tables
A.6 and A.7 in Appendix A for reference.

The procedure set out in Eqs. (3)–(16) is a high-level attempt at
designing an electric power system that includes variable genera-
tion, conventional generation, HVDC transmission, and electric
storage by optimizing in terms of electric power wasted (load-
matching). The optimization relies on many inputs, some of which
are engineering constraints; Lts;Lfs;Lrs;Ltr ;Dab;G

u
l and Gd

l, some
are policy- or regulatory- imposed; Pl;R

s
l and Rg

l, others are
socio-economically derived; Lls and X/j, and one is meteorologically
prescribed; r/js. The success or failure of such a routine will be based
on the accuracy of all of the exogenous parameters described, which
is particularly true when discussing new resources that are asyn-
chronous and variable in nature (e.g. wind and solar PV). The proce-
dure will find the best blend of generators, transmission, and storage
that will result in a system with the least amount of electric energy
wasted, which is of paramount importance when studying variable
generators being connected to an electric power system where its
variability can be both a positive and negative effect.

The drawback to the optimization represented in Eqs. (3)–(16)
is that while it is optimal with respect to the dispatchable genera-
tion used and electrical variable generated energy curtailed, when
transferring to the real-world, the costs of such a system may be
much higher than necessary, causing the system to not be imple-
mented. Indeed, one can imagine that the construction of such a
system may use more energy in deploying the generators than is
saved by matching the electricity load optimally. However, the
load-matching optimization was developed for two important rea-
sons. First, it is scientifically instructive to determine the upper
bounds for variable generation to match the electricity load with-
out the constraint of costs. Secondly, the mathematics of the cost
optimization and load-matching optimization are similar for cer-
tain aspects. We show a test case in Section ‘Example test case’.

3. Cost minimization technique

In Section ‘Electrical load-matching technique’, the load-match-
ing optimization routine was developed and explained in detail. In
the present section, we will develop a cost optimization routine.
The cost optimization is superior to the load-matching optimiza-
tion for real world applications for the development of a free-
market solution to the incorporation of variable generation into
an electric power system.

The cost optimization for an electric power system formulated
in the present paper is written as

Min w ¼
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subject to Eqs. (4)–(16). Here the notation C denotes cost coeffi-
cients. Specifically, Cv

/j is the capital cost (per unit generator con-
structed) of the variable generator of type j at location /; Cg

l and
Cs

l are the capital costs of the dispatchable generators and storage
facilities in node l; Ctr

âb̂ is the cost of each HVDC transmission line
per unit power per unit length, Cf

l is the cost of fuel for the dispatch-
able generators per unit energy, and Cc

l is the additional carbon tax
cost per ton of CO2. The capital costs are considered to be the amor-
tized cost over the optimization time period. The exogenous vari-
ables Hl and F represent the heat rate of the dispatchable
generation fleet (the amount of heat energy needed to produce a
unit of electricity) in node l and the carbon content of the fuel type
(per unit of thermal energy). The product of the three terms
Cc

l �Hl � F result in a cost-per-unit energy of the dispatchable gen-
eration in each node l. The other terms in the objective function
have been introduced in the previous section. A summary of all
these variables can be found in Appendix A.

The objective function w is the total generation, transmission,
and storage costs for an electric power system for a selected time
frame. Each term is weighted by their respective costs, which
means two things; first, to be an effective planning tool for an opti-
mal system the costs need to be accurate considering, among other
things, the discount rates, the incentives and the marginal costs of
the technology, and secondly, the costs can be tuned to discover
the cost at which a technology will become competitive in the gen-
eration fleet. In the optimization Eqs. (20) and (4)–(16), it is
assumed that there is only one type of dispatchable generator (nat-
ural gas combined cycle) as we are considering a high penetration-
level, variable-generation system, however it is a trivial addition to
expand the optimization to include a variety of dispatchable gener-
ators each with their own costs, ramp rates, reserve requirements,
and carbon costs using the same process as shown here. It is also
possible to blend all the different dispatchable generators into a
single average one and use that in the exact optimization shown.

Both optimizations, in Eqs. (3)–(20) with Eqs. (4)–(16) assume
no knowledge of the existing electric power system, unless speci-
fied by the user. The optimizations can take the generation into
account by removing it from the electric load in Eq. (4). The trans-
mission can be added in as well, by aggregating the existing line
capacities and then changing the bounds on the size of the trans-
mission capacity in the optimization; however, it is assumed that
the HVDC transmission envisioned by the optimization would be
an overlay to the existing network, which is taken into account
by losses considered within each node l. The power of the optimi-
zation set out in (20) with (4)–(16) resides with the fact that the
system is always the cheapest or most economical. If you change
one parameter, it will find the most economical electric power sys-
tem that is possible and this allows for a detailed examination of
what is realistically possible from an economical and technical
standpoint. In Section ‘Example test case’, we show a test case of
the cost optimization procedure in action. We compare the load-
matching optimization against the cost optimization to show
how they differ.

One final idea for an optimization considered in the present
paper is a hybrid optimization,

minimize n ¼ wþ k � v; ð21Þ

where we minimize the sum of the load-matching optimization and
cost optimization regularized by k. Of course, Eq. (21) is subject to
Eqs. (4)–(16). We do not perform the actual optimization here.
However, in Section ‘Discussion and conclusions’ we briefly discuss
some analysis of the role of k in determining an optimal system. We
mention it because it is an interesting future field of study, more
specifically, when forecast data is incorporated to generate a hybrid
weather forecast load-matching and cost optimization.
4. Example test case

We conduct an example test case of the two optimizations set
out in Sections 2 and 3. To keep the analysis simple, we only take
three forms of generation into account: solar PV, onshore wind,
and natural gas. For the wind and solar PV power output estimates,
we utilize weather data from seven-day forecasts of the Flow-fol-
lowing Icosahedral Model (FIM) [22] over a domain roughly equiv-
alent to the contiguous USA. The data is for the first 750 h of 2008
(winter) and hours 4000–4750 of 2008 (summer). The natural gas
plants are assumed to be back-up generation for when the wind
and solar PV cannot meet the electrical demand. We only constrain
how the plant operates in terms of the equations within the opti-
mization, we assume other constraints to be negligible in terms
of the current methodology. The price data for cost optimization
is taken from the transparent cost database median projections
for 2030 for the different technologies [23], which equates to
$1,425.70/kW for onshore wind, $2,652.40/kW for utility-scale
PV, $1,033.10/kW for natural gas combined cycle. We amortized
the cost at a discount rate of 5% over 30 years. The cost of transmis-
sion is set at $1.25/kW-mile, while the cost of storage is held at
$1,500.00/kW. The price of natural gas is assumed to be $6.60/
MM Btu; the average price for natural gas to electricity producers
in the USA between 2000 and 2010 [24]. The unit size of the gen-
erators, storage, and transmission are assumed to be 2.52 MW for
wind turbines, 20 MW for solar PV plants, multiples of MW for
both storage and natural gas plants, and MW-miles for the trans-
mission. The dispatchable generators are taken to be only natural
gas combined cycle plants.

The weather data is transformed into normalized electric power
(r/js 2 ½0;1�) that designates the percentage power output of a FIM
cell for wind and solar PV. The transformation from weather data
to electric power is performed by creating power modeling algo-
rithms. The process of converting weather data to power in this
manner is described in [25,26]. The basic approach is to take the
salient variables (wind speed, solar irradiance, etc.) from a numer-
ical weather prediction model and process them through computer
code that mimics the behavior of a wind turbine and solar PV
panel. The output will take into account the engineering con-
straints of the technologies as well as the weather components.
To get a normalized value the output from the power model is
divided by the capacity of the technology modeled.

We make the simplifying assumption that all variables are not a
function of space or node (e.g. Cv

/j ¼ Cv ;Rs
l ¼ Rs;Ltr

ab ¼ Ltr , and
Pl ¼ P). The upper bounds for the amount of variable generators
(X/j) to be positioned is calculated such that only half of each
FIM cell can be utilized. The electrical losses from and to storage
are considered the same and take the value of 5%
(Lts ¼ Lfs ¼ 5 � 10�2). The losses for energy in storage is taken to
be 0.01% per time step (Lrs ¼ 10�4). The electrical losses in the
HVDC transmission is assumed to be 0.5% per 100 miles
(Ltr ¼ 5 � 10�5). The operating reserve requirements for storage
and natural gas are the same at 5% (Rs ¼ Rg ¼ 5 � 10�2). The natu-
ral gas and storage ramp rates and charge rates, respectively, are
considered the same at 20% (Gu ¼ Gd ¼ SC ¼ SD ¼ 2 � 10�1). The
amount of variable generation has to be larger than 20%
(P ¼ 2 � 10�1) and the carbon tax is set at $20 per ton of carbon
(Cc ¼ 2 � 101). The heat rate of the natural gas fleet is set at
6.43 MM Btu/MWh (H ¼ 6:43) and the carbon content of natural
gas is 0.0532 tons/MM Btu (F ¼ 5:32 � 10�2) [27]. The transmission
is based on the US being divided into sixteen equal regions and the
node center being the largest city in each region, which forms the
basis of matrix Dab. The transmission is further limited to only
allow transmission between adjacent nodes, such that every node
has access to the power that crosses its borders. The electric load
was obtained by means of historical data for 2008 from Federal
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Regulatory Commission (FERC) form 714 [28]. We also assume that
there is no underlying electric power system, that is the optimiza-
tions are trying to find a new electric power system given all the
information mentioned above. For the load-matching optimization,
the transmission upper bounds is set to 50 GW per arc corridor (or
line), while the storage upper bound is set to 2 GW per node.

Fig. 1 shows the variable generation locations from the
load-matching optimization procedure for the two time periods
investigated. The top panel shows the solution for the 750 h at
the beginning of the year (winter) and the bottom panel shows
the solution for the 750 h in the middle of the year (summer).
We investigated two time periods to try to understand the perfor-
mance of the optimization. The region for which variable genera-
tion can be installed is a rectangle and, therefore, does not
exactly fit all possible sites within the contiguous US. The blue
squares are FIM cells (approximate area of 900 km2) which have
wind turbines installed and the darker the shade the more installed
(as denoted by the legend in Figs. 1 and 2). The yellow/red squares
are the FIM cells that have solar PV installed in them. The gray lines
denote the HVDC transmission lines constructed by the optimiza-
tion, with the thickness of the line representing the relative capac-
ity. The images only show the capacity of the wind, solar PV, and
transmission infrastructure. The power flow, or instantaneous gen-
eration, is not shown. The size of the lines are thickest at 50 GW
and all other lines are normalized to this value, to see the relative
difference. The same normalization is applied to Fig. 2. For the
load-matching optimization, the HVDC transmission lines are all
Fig. 1. The location of wind (blue) and solar (yellow) installed plants (MW/km2) for the
The gray lines are the HVDC transmission constructed by the optimization, where the th
interpretation of the references to color in this figure legend, the reader is referred to th
constructed to maximum capacity (50 GW). It should be noted that
we are not suggesting that a single line of a specific capacity be
constructed, rather that the total capacity be built between the
two nodes. The total installed transmission throughout the system
is 4200 GW. The location of the natural gas plants and storage are
not shown by the optimization as they are constructed on a nodal
basis (that is 2 GW of storage in a specific node).

Both the winter and summer load-matching optimizations had
the same configuration; namely 146,345 rows, 271,011 columns
and 4,360,544 non-zeros. The optimizations each took 315 s to
complete (�110,000 iterations) and output the results. The
memory required was 2.5 GB and was run on a single processor
in deterministic mode. The optimal objective function for the
two load-matching optimization were Oð107Þ. For the winter, the
load-matching procedure was optimal at 94.75% of the electrical
demand met by variable sources (and extraction from storage).
The summer month is better at 96.99%, which is likely due to extra
solar PV installations (255.09 GW in summer compared with
116.28 GW in winter) and the better solar resource in the summer,
which is correlated to the demand. It can be seen in Fig. 1 that
there is much more wind power installed in the summer than
in the winter optimization (2006.89 GW compared with
1033.11 GW), a consequence of the poorer summer wind power
availability. The natural gas installations reduce from winter to
summer (from 1547.97 GW to 1216.11 GW) that can be attributed
to the decrease in variability of wind and increase in use of solar
PV for the daytime peak load. The storage and transmission
load-matching optimization. Top panel is for winter and the bottom is for summer.
ickness represents the capacity (here all equal to the upper bound of 50 GW). (For
e web version of this article.)



Fig. 2. The location of wind (blue) and solar (yellow) installed plants (MW/km2) for the cost optimization. Top panel is for winter and the bottom is for summer. The gray lines
are the HVDC transmission constructed by the optimization, where the thickness represents the scale of the capacity. The difference between these images and those in Fig. 1
is striking, but they are all optimal electric power systems, providing power every time step of the optimization without fail. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

C.T.M. Clack et al. / Electrical Power and Energy Systems 68 (2015) 103–114 109
constructed in both scenarios are the same, as the optimization
maxed out the use of both (2100 GW of transmission capacity
and 32 GW of storage capacity). The computed yearly amortized
cost of the winter load-matching optimization is $357.91 billion,
while the summer is $449.26 billion. The estimated yearly carbon
dioxide emissions from the winter and summer optimizations are
91.44 and 55.80 million metric tons, respectively.

In Fig. 2, we show the variable generation locations for the elec-
tric power systems produced by the two cost optimizations. The
difference between the two methods is now striking. The locations
of the wind and solar PV installations is completely different, and
yet both techniques produce an optimal network. The optimal net-
work from the cost minimization is more compact and less differ-
ent between summer and winter. The optimal-cost solution
provided 89.49% of the electricity from variable generation in the
winter and 82.94% in the summer. The wind installed is
812.98 GW in the winter optimization and 897.40 GW in the sum-
mer optimization, while the solar PV constructed is 0 GW in winter
and 171.67 GW in summer. The solar is zero in the winter as it is
not cost competitive over that time period. The natural gas instal-
lations are 229.80 GW in winter and 284.25 GW in summer. There
is no storage installed in either run, as it is not cost competitive.
The transmission line construction is significantly reduced com-
pared with the load-matching optimization at 407.66 GW for win-
ter and 572.23 GW for the summer. The estimated cost for the
winter optimization is $127.39 billion, while the summer optimi-
zation comes to $193.27 billion. The difference in cost has several
factors, but a major one is the difference in the amount of electric-
ity required between the two periods considered. The estimated
yearly carbon dioxide emissions from the two optimization runs
are 183.24 and 316.44 million metric tons for the winter and sum-
mer, respectively. The cost optimizations have the same number of
variables and constraints; 146,073 rows, 153,839 columns and
4,150,626 non-zeros, which is not overly different to the load-
matching optimization, however, the computational difficult has
increased. The cost optimizations take 1820 s to complete
(�269,000 iterations), but still only require 2.5 GB of memory
and a single processor. The optimal objective function for both of
the cost optimizations was Oð1010Þ.

The load-matching and cost optimization example results are
summarized in Tables 1 and 2. The tables show that the cost opti-
mization results in lower capacity installations and reduced yearly
costs, which is of paramount importance in a realistic simulation of
the electric grid. The load matching optimization has a higher uti-
lization of variable generation, and thus a lower carbon emission
footprint, illustrating that it is finding the upper bound with
regards to possible variable generation meeting the electric load.
Even though the load-matching optimization results in lower car-
bon emissions, and higher variable generation, it comes at a high
price (�2.8 times for winter and �2.3 times for summer). The car-
bon emissions in the calculations only come from the burning of
fossil fuels, however, in reality, the construction of the variable
generation will come with emissions of their own, and so the
benefits may be outweighed by the added emissions due to



Table 1
Comparison between the winter version of the load matching and cost optimizations.

Result – winter Load matching Cost optimization

Wind Capacity (GW) 1033.11 812.98
Solar Capacity (GW) 116.28 0.00
Natural Gas Capacity (GW) 1547.97 229.80
Storage Capacity (GW) 32.00 0.00
Transmission Capacity (GW) 4200.00 407.66
Average Transmission Utilization (%) 20.3 30.0
Yearly Cost (USD$) 357.91 billion 127.39 billion
Variable Generation (%) 94.75 89.49
Carbon Emissions (million metric tons) 91.44 183.24
Computational Expense (core seconds) 315 1820
Iterations �110,000 �269,000

The bold font signifies that the optimization is superior in terms of that metric for
the system.

Table 2
Comparison between the summer version of the load matching and cost
optimizations.

Result – summer Load matching Cost optimization

Wind Capacity (GW) 2006.89 897.40
Solar Capacity (GW) 255.09 171.67
Natural Gas Capacity (GW) 1216.11 284.25
Storage Capacity (GW) 32.00 0.00
Transmission Capacity (GW) 4200.00 572.23
Average Transmission Utilization (%) 19.6 27.9
Yearly Cost (USD$) 449.26 billion 193.27 billion
Variable Generation (%) 96.99 82.94
Carbon Emissions (million metric tons) 55.80 316.44
Computational Expense (core seconds) 315 820
Iterations �110,000 �269,000

The bold font signifies that the optimization is superior in terms of that metric for
the system.
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construction of extra capacity. Indeed, the load-matching optimi-
zation constructs far more natural gas in these scenarios as well,
of the order of 4–7 times the capacity of cost optimization. The
additional capacity is not restricted to generation, the load-match-
ing over builds transmission and storage as well. The trade-off for a
more realistic optimization via cost compared with the load-
matching is computational expense. The cost optimization is 6
times the computational time and 2.5 times the iterations of the
solver. The additional time per iteration is caused by the more
complex objective function.

The optimization schemes developed in the present paper have
been tested on numerous examples. The results, with regards to
performance, are very similar between runs, thus we do not show
them here. In general, the cost optimization takes longer (on the
order of six times as long) to complete than the load-matching
optimization.
5. Discussion and conclusions

In the present section, we will discuss the differences between
the two formulations for optimizing an electric power system and
the difficulties associated with each. The load-matching optimiza-
tion is computationally faster than the cost optimization, which is
due to the less complicated relationship between the constraints
and the objective function. The load-matching does produce a sys-
tem that has 10% more variable generation than the cost optimiza-
tion, but the costs are three times higher. Indeed, there is more
wind, solar PV, natural gas plants, storage, and transmission
installed. The added capacity increases the societal and environ-
mental impacts because the installation of variable generation is
not without carbon emissions. The true power of the cost
optimization is that one can interpret what a perfect free market
would develop at certain cost levels. The load-matching optimiza-
tion can show how closely a variable generation-dominated elec-
tric grid can meet the load, without any regard to cost. In other
words, the load-matching can be considered an upper bound to
meeting the load without dispatchable generation and curtailment.
The cost optimization will find the most economical system, which
will be more realistic. In the authors’ opinion, the cost optimization
has the most real-world use because in reality the generators must
pay for themselves to be viable economically, otherwise they will
not be built in the first place.

Both optimizations show different solutions for the two time
periods. The difference can be associated with the fact that they
are optimal to only that time period and are, therefore, likely to
be suboptimal for any other time period. The optimizations will
become more and more accurate the longer the time period over
which they are optimized on. Of course, this problem can never
be fully resolved, but the variability can be reduced to tolerable
levels. Moreover, for variable generation-dominated electric grids,
the higher the spatial and temporal discretization and longer time
series, the better the optimization result will be. The difficulty in
achieving this will be computational, the higher the resolution
and the longer time series will result in a much more intensive
problem. For example, to conduct a one-year optimization, with
the same resolution as the current optimizations would require
30–50 GB of memory and several tens of hours of computing time.

The weather and load data do vary on inter-annual timescales
and so the problem variability will always persist. However, the
weather and load data can be described in a statistical manner.
One technique that the present technique can handle is a quasi-
stochastic optimization. To carry this out long time series of
weather-driven power data and electric data are required, which
can be distilled down to a mean value and a standard deviation.
The optimization can then pre-process the power and load data
to provide stochastic datasets to optimize upon. The stochastic ver-
sion of the optimization would have to be performed numerous
times to converge on a most appropriate solution; or to give a
probability solution. Stochastic optimization will lead to a possible
solution that is sub-optimal for each individual time horizon, but
hedges for different weather patterns over a longer time horizon,
resulting in a more appropriate solution for the longer term.

The biggest challenge of the optimizations in the present paper
is the modeling of the HVDC transmission system. The number of
transmission endogenous variables rises by the number of the
nodal locations to the power of the new time steps. For the optimi-
zations here, an additional time step would add sixteen new trans-
mission variables. Testing of the optimizations has shown that
sixteen nodes over the continental US is optimal in terms of the
trade-off between the computing time (and resources) required
and the resulting electric power system. The cost optimization,
although superior to the load-matching in reality, has the disad-
vantage of being controlled by the prices of the technologies. To
get a worthy result from the cost optimization realistic prices must
be input to the procedure. For both optimization, for variable gen-
erator-dominated systems, accurate weather data is also essential
for a credible result. In fact, for variable generation the weather
data is the most critical input.

The present paper has derived two optimizations that can effi-
ciently simulate a large-scale electric grid that incorporates vari-
able generation and transmission simultaneously. The procedure
is intended to be used on large geographic domains with high spa-
tial- and temporal- resolution weather, topological, and electrical
data. The optimizations included are expandable to include any
generator type, any transmission network configuration, and any
regulations required to simulate an effective electric grid over a
pre-defined domain. Other optimizations of electric grids have
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been introduced into the literature, but each has a significant defi-
ciency, which the present methodology corrects and improves
upon. For example, in [9] their try to do a load-matching optimiza-
tion, but find that they have a numerical instability problem when
using a natural gas constraint. The reason for the apparent issue, is
that the ramp rate was only dependent on the previous time step
output. In the present methodology, this is avoided, because the
ramp rate is controlled by the previous time step and the capacity
of the dispatchable fleet. In addition, [9] does not take into account
the transmission component of the system, which is included in
the present paper. It is noted in [9] that the addition of transmis-
sion is a difficult challenge due to its degeneracy and difficulty in
representation, even as an approximation. Other load matching
techniques in the literature have similar limitations with regards
to the addition of transmission within the optimization routine.

The cost optimization introduced in [11], is not an LP method,
but rather a trial-and-error method that tests billions of combina-
tions of generators and storage to find the least cost solution. It also
does not take into account transmission. It is also over a very lim-
ited geographic domain, so expansion of that methodology will
become limited, due to the number of iterations it takes to find a
minimum (�28 billion combinations). It finds the least-cost option
to power the electric grid to 99.99%, which is not the true cost-
optimal solution for such a system. The present paper, introduces
the cost optimization that will find the theoretical minimum for
a system of any geographic size. The cost optimization considers
any generators, transmission, and storage. The only true cost opti-
mization available in the literature is found in [10]. In the authors’
opinion, the economic evaluation of the generators is very accu-
rate, however, the treatment of the weather discretization is unfa-
vorable for variable generation. In [10], they take the peak and
median day each month only for their optimization period, this
caused poor optimization performance. This is illustrated in the
fact that the summer and winter months in the current example
optimizations are different, which is caused by the different
weather regimes. The only way to perform optimization including
variable generation is to include all available weather information
(be that hourly, 15-min, etc.). The other major drawback for the
optimization in [10] is that it is over a small domain, and the trans-
mission only exists where transmission currently exists. It does
allow expansion, but only over the same corridors.

The cost optimization of the present paper, allows for a com-
pletely new infrastructure of transmission to be built on top of
any existing network supplied within the optimization. The math-
ematical derivation of the transmission flux term allows efficient
calculation of the transmission network simultaneously to the gen-
eration and storage network. It allows solvers to breakdown the
problem in a logical manner. In the literature there does not exist
any optimizations that take into consideration the generators,
transmission, and storage simultaneously over large geographic
domains for all time steps within the time period investigated.

The hybrid optimization, introduced in Eq. (21), can take the
advantages of both optimization routines and blend them together
to give a result that is both economically favorable and matches
the load effectively. The hybrid optimization is not a free market
solution and as such is not as economical as the cost optimization,
but it could provide sensitivity analysis between the two optimiza-
tions. From the results of the optimizations performed in the pres-
ent paper, we can find approximate values for the regularization
factor k. From the cost optimizations we have

w � 2 � 1010; vw � 8 � 107 ) k ¼ Oð102Þ ð22Þ

and from the load-matching optimizations we find

wv � 4 � 1010; v � 2 � 107 ) k ¼ Oð103Þ: ð23Þ
In other words, if k	 103 the hybrid optimization will act as the
load-matching optimization, if k
 102 the hybrid optimization will
perform like the cost optimization, and if Oð102Þ 6 k 6 Oð103Þ the
hybrid optimization blends the cost and load-matching objective
functions effectively. Although we do not perform the hybrid opti-
mization, this analysis has important consequences. On inspection
of Eq. (21), it can be seen that the dimensions of k is $/MWh. Hence,
the cost of dispatchable or curtailment must be Oð102Þ ¼ $100/
MWh before the load-matching technique becomes important,
which explains why the cost optimization is so much more
economical.

In the present paper, we have developed two robust formula-
tions for optimizing an electric power system that includes con-
ventional and variable generators, HVDC transmission, and
storage capacity. Both optimizations include salient features of
an electric system from a high-level perspective, and they can both
be expanded to increase the accuracy of the modeling of the engi-
neering issues. The optimizations derived in the present paper are
the first to design the generation, transmission, and storage net-
works simultaneously for an electric grid over large spatial
domains at a high level while considering each time step of the
time period in question. The optimizations are fully expandable
to incorporate more generator, transmission, and storage types,
as well as regulatory and policy constraints. The work contained
in the present paper will be incorporated into higher-resolution
optimizations over larger times series in future work. The cost
optimization will be deployed to investigate the impact of variable
generation within the US electric power system. The implementa-
tion of such a large scale problem in a novel area is due to the opti-
mization being formulated in LP rather than NLP to keep the it
tractable in terms of time and computer resources.
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Appendix A. Summary of symbols, variables, and equations

The present appendix contains a summary of all the symbols,
variables, and equations employed by the optimization contained
in the paper. The appendix is designed to help the reader under-
stand the mathematical description. In the optimizations pre-
sented in the paper, there are two types of variables; the first is
exogenous, or computed by the optimizations, and they are
denoted in the tables with a V; the second is endogenous, or pre-
scribed by the user (or defined by set rules), and are denoted by
P in tables. We display the purpose of each equation utilized in
the present paper in tabular form for ease of reference.

In Table A.3, the symbols for the two objective functions, Eqs.
(3) and (20), are described. The table clearly displays which of
the symbols exists in the different objective functions. It is also
shown which variables are used in the constraints (and therefore
will not be repeated in other tables).

The contents of Table A.4 display the symbols included in Eqs.
(4)–(6). The symbols which are both in Eqs. (4)–(6) and contained
within Table A.3 are not repeated. The important variable combi-
nations that are shown and explained for clarity. The purpose of
these equations is to ensure the electrical load is met at every
instant within the optimization at every node, even when consid-
ering transmitting the power to different locations, which is a
fundamental requirement of any electrical power system.



Table A.3
Symbols utilized within the objective functions contained in Eqs. (3) and (20).

Symbol Load
matching

Cost
optimization

Included in
constraints

Description

x/j – V V The installed capacity of each variable generation (in MW) at each resource site
Cg

l – V V The installed capacity of dispatchable generation (in MW) within each node

Cs
l – V V The installed capacity of storage (in MW) within each node

T âb̂ – V V The installed capacity of transmission (in MW) between each transmission node

gls V V V The amount of dispatchable power required (in MW) each time step within each node
T abs V – V The power flow within the transmission network (in MW) between each transmission node at each time step

so
ls; s

i
ls V – V The power transmitted to (and from) storage within each node at each time step

cls V – V The amount of generated power that is curtailed (in MW) within each node at each time step

LT
ab

P – P The fractional electrical power losses (% per mile) when transmission is performed between each
transmission node

Dab ;Dâb̂ P P P The geodesic distance between each transmission node center (in miles)

Lts
l ;L

fs
l

P – P The fractional electrical losses (%) due to sending power to (and from) storage within each node

Cv
/s; C

g
l; C

s
l – P – The amortized capital costs (currently in USD$) of the generators (variable, conventional, and storage) per

MW installed, including fixed operation and maintenance (O/M)

CT
âb̂

– P – The amortized capital costs (currently in USD$) of the transmission lines per MW-mile, including fixed O/M

Cf
l

– P – The cost (currently in USD$) of the fuel for dispatchable generation per MWh

Cc
l;Hl;F – P – The cost (currently in USD$) of carbon per ton, the heat rate of the dispatchable fleet, and the carbon content

of the dispatchable fuel within each node

Table A.4
Summary of symbols for Eqs. (3)–(5) along with explanation of major term combinations.

Symbol Description

x/j ; gls;L
fs
l ; s

o
ls; s

i
ls; cls; T abs;L

T
ab;Dab; T âb̂

These symbols were described in Table A.3

tls The power transmission flux for each of the nodes (in MW). The term acts as a critical link between the transmission
network capacity optimization, Eqs. (5) and (6), and the load fulfillment constraint, Eq. (4). It is this term that allows
efficient operation of the simultaneous optimization of generators and transmission [V]

b/l The binary mask term that designates which resource sites belong to which node [P]
r/js The realizable electrical power (%) for each variable generator at each resource site at each time step. The most important

term in the optimization when considering weather driven renewable energy. All the information about the weather is
contained in this term, any reduction in spatial or temporal resolution degrades the optimizations’ realism [P]

Lls The electrical load (in MW) to be fulfilled in each node at each time step, which is dependent on human activity. The
competing signals of the weather and the electrical load are what cause the optimal design of an electrical system with
renewable energy so difficult [P]P

/

P
j b/l � x/j � r/js
� �

þ gls The total generation (in MW) at each time step within each node

si
ls � 1� Lfs

l

� �
� so

ls
The net contribution (in MW) to generation due to storage in each node at each time step

P
aT abs � 1� LT

ab �Dab

� ����
b¼l

The net sum of all inbound power transmission (in MW) to each node at each time step

P
bT abs

���
a¼l

The outbound power transmission (in MW)

Table A.5
Summary of symbols for Eqs. (7)–(13).

Symbol Description

so
ls;L

ts
l ; s

i
ls;C

s
l;C

g
l; gls These symbols were described in Table A.3

Ŝls The amount of energy (in MWh) available in the storage reservoir within each node [V]

Lrs
l The fractional electrical losses (%) from the storage reservoir within each node per time step [P]

Rs
l;R

g
l The reserve margin for storage and gas (%) [P]

SD
l ;S

C
l The (dis) charge rate for storage within nodes (% of the capacity) [P]

Gd
l;G

u
l

Dispatchable down- and up- ramp rates within each node (% of the capacity) [P]

Table A.6
Summary of symbols for Eqs. (14)–(19).

Symbol Description

x/j ; b/s; r/js; Lls;C
s
l; T âb̂

These symbols were described in Table A.3 & A.4

X/j The upper bounds for the variable generators. It specifies the maximum MW of capacity allowed in each resource site [P]
Pl The fraction (%) of the electrical load that must be met by variable generation [P]
Us

l;U
t
l The upper bounds for the storage and transmission (in MW) for each node. These terms are only prescribed for the load matching

optimization [P]
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Table A.7
Summary of indices and sets used throughout the present paper.

Symbol Description

N The set of all nodes
B The set of all renewable energy resource sites
V The set of all variable generator types
Q The set of all time steps within the optimization
a; b The indices for the head and tail of the transmission power flow arcs

â; b̂ The indices denoting the head and tail of each transmission node

l Indices for the power producing/ consuming nodes
/ Index of the renewable energy resource sites
j Defines each of the variable generator types
s The index for the time steps

Table A.8
Brief description of equations used in the optimizations.

Equation Description and purpose

3. The objective function of the load matching optimization. It minimizes the total of the dispatchable generation consumed, the electrical power curtailed,
the roundtrip electrical losses for storage, and the electrical losses in transmission

19. The objective function of the cost optimization. It minimizes the total cost of the installation of generation capacity, the installation of storage, the
installation of transmission infrastructure, and the fuel consumed by the dispatchable generators (with the possible inclusion of a carbon tax)

4. The load following constraint. The most fundamental constraint in the optimization. It combines the variable generation, the dispatchable generation, the
net storage flux, the transmission flux, and the curtailment of variable generation such that the electrical load is exactly met at every time step in every node
throughout the optimization

5. The transmission flux link equation. The equation that allows the simultaneous optimization of the transmission and generation network. It calculates the
net flux for each node, when taking electrical losses into account for each arc. It is a Direct Current (DC) approximation

6. The transmission capacity constraint. It determines the capacity of each transmission line by always being greater than the power flow within the lines
7. The storage reservoir. The equation that keeps track of the energy stored within each node. It computes the net flux for storage with the addition of the

previous time step reservoir value while taking into account the loss of energy while in storage
8. The storage capacity constraint. It determines the capacity of each node’s storage by always being greater than the power in storage multiplied by a reserve

margin
9. & 10. The storage charge and discharge constraints. It restricts the charge and discharge rate for the storage facilities in each node at each time step. The rate is

tied to the capacity of the storage
11. The dispatchable capacity constraint. It determines the capacity of each node’s dispatchable generators by always being greater than the dispatchable

power required at any time step multiplied by a reserve margin
12. & 13. The dispatchable ramp rate constraints. It restricts the up and down ramp rate for the dispatchable facilities in each node at each time step. The rate is tied

to the capacity of the storage and the previous dispatchable power generated
14. The variable generator upper bounds. Constrains the variable generator size (in MW) at each resource site to be below a set limit, usually defined by

limitations on space
15. The RPS constraint. Ensures the optimization provides a pre-designated percentage of the electrical load from variable generation
16. Elements and Sets. Describes the elements and sets used in the other equations
17. & 18. Storage and transmission upper bounds. Only utilized in the load matching optimization. It limits the storage and transmission that can be constructed
20. The objective function of a hybrid optimization. It minimizes a blend of the cost and load matching optimizations, regularized by k
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Table A.5 show the symbols from the dispatchable and storage
constraints, Eqs. (7)–(13). These equations deal with the installed
capacity of the dispactables and storage plants, as well as the
ramping and (dis) charge rates. The purpose of the equations is
to constrain the optimization with respect to the engineering capa-
bilities of the conventional generation and generic storage facili-
ties. Again, symbols explained previously will not be repeated.

We show the final symbols in Table A.6 which are defined in the
remaining Eqs. (14)–(19). This table completes the summary of all
the endogenous and exogenous variables employed in the present
paper. Of course, again, we do not repeat earlier defined variables.
Additionally, for extra clarity, we display the indices and sets char-
acterized in the present paper in Table A.7.

In the final table of the present appendix, we explain the pur-
pose of each equation utilized in the paper. The brief description
of each equation is not meant to replace the explanation in the
text, but rather it is designed to support it and be used as a quick
reference guide. The content is in Table A.8.
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