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0c Abstract 
 
This paper will explore the Lorenz Equations, thought up by Edward 
Lorenz in 1963, and described in a paper which changed the 
mathematical world forever. The author will highlight some important 
and interesting properties and give rigorous proofs for some of the more 
obvious ones. The paper is designed to give an introduction to the 
wonderful world of Chaos. The paper will also introduce the reader to 
Bifurcations and explain simply what they are and why they exist. Finally 
the author will use Numerical Methods to find out more about the Lorenz 
equations. 
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1 Introduction to the Lorenz Equations 
 
(1.0) Introduction 
 
This paper is designed to discuss some of the most fundamental and interesting 
properties of the Lorenz equations (to discuss all the properties of the Lorenz 
equations is far beyond the scope of a single paper). It will be assumed that the reader 
has no prior knowledge of dynamical systems or bifurcations. It will be assumed, 
however, that the reader is well versed in algebraic manipulations and derivatives 
(ordinary and partial). 
 
At this point the author would like to note that all of the computations of the Lorenz 
equations must be done numerically, as analytical solutions are impossible, using 
known methods. The author uses MatLab for all the numerical computations and 
diagrams; however the reader need not be familiar with MatLab as the paper is 
interested in the properties not the programming. 
 
(1.1) Historical Setting 
 
In 1881 the French mathematician Henri Poincaré published Mémoire sur les courbes 
définies par une equation différentielle, in which he studied the problem of the motion 
of three objects in mutual gravitational attraction. He found that there can be orbits 
that are nonperiodic, but not increasing to infinity nor tending to a fixed point. This 
was the first paper to suggest such an idea. After this point only a few special minds 
identified more systems showing the same characteristics of nonperiodicity and 
sensitivity to initial conditions; the overwhelming consensus was that, outside the 
quantum world, classical physics provided the theory for completely predicting the 
state of the universe at any future time (indeed experimentalists would routinely hide 
(i.e. not publish) data from real systems that did not conform to this behaviour). 
 
In the middle of the 1900s, computer and satellite technology was being developed 
and it was believed this would allow the human race to completely predict and control 
the weather. Clearly, this has not happened because everyone knows that weather 
forecasting is still not very accurate. The problem was the assumption that tiny 
perturbations in the system only amount to tiny changes over time. 
 
In 1963 Lorenz published his paper, Deterministic Nonperiodic Flow, in which he 
showed that tiny differences in the initial conditions actually amount to dramatic 
differences in the systems behaviour over time. As Gleick (Gleick 1987: 21) puts it, 
“if one infinitely accurate sensor were placed within every cubic foot of the Earth’s 
atmosphere, and the data were fed to an infinitely powerful computer, reasonable 
prediction (e.g. rain vs. shine) would still be limited to less than one month”. This is 
just illustrating that predictions become suddenly truncated even in a completely 
deterministic system. Still today, modern mathematicians and physicists alike will 
neglect small nonlinear terms in order to simplify the system. There is a reluctance to 
abandon the predictability if the classical universe. (This is why mathematicians 
spend so much time on domains of definition for these approximations).  
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(1.2) Derivation of Lorenz Equations 
 
In this section the author wishes to give a brief description of where the Lorenz 
equations come from. One can spend many hours trying to derive them formally, 
however, the derivation is long winded, complicated and above the scope of this 
paper. This paper is more interested in the behaviour of the system. (If the reader 
requires more details regarding the derivation then see Kundu 2002, Lorenz 1963 or 
Sparrow 1982).  
 
To derive the Lorenz equations one must look to Saltzman paper (Saltzman 1962), as 
Lorenz did. The convection equations of Saltzman came from the investigation of a 
fluid of uniform depth H, with a temperature difference between upper and lower 
layer of T∆ , in particular with linear temperature variation. In the special case where 
there is no variation with respects to the y-axis, Saltzman provided the governing 
equations: 

 
2

2 4( , )
( , )

g
t x z x

ψ ψ θψ ν ψ α∂ ∂ ∇ ∂
∇ = − + ∇ +

∂ ∂ ∂
, 

 
2( , )

( , )
T

t x z H x
ψ θ ψθ κ θ∂ ∂ ∆ ∂

= − + + ∇
∂ ∂ ∂

, 

 

 
 

Figure 1.1:  The simplified fluid motion described by Saltzman. 
 

where ψ  is a stream function for the two-dimensional motion, θ  is the temperature 
deviation from the steady state. ψ , 2ψ∇  vanish at the upper and lower boundaries, 
and g , α , ν , κ  are, respectively, constants of gravitational acceleration, coefficient 
of thermal expansion, kinematic viscosity and thermal conductivity. Rayleigh 
discovered that at a critical point (known now as the Rayleigh number) these 
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equations show a convective motion. Lorenz then defined three time dependent 
variables: 
  
 X proportional to the intensity of the convection motion, 

 
Y proportional to the temperature difference between the ascending and 
descending currents. 
 
Z proportional to the difference of the vertical temperature profile from 
linearity.     

 
The result, from substituting the above into the Saltzman equations, and further 
derivation is the Lorenz equations: 
 

 ( )dX Y X
dt

σ= − ,                 (1.1) 

 

( )dY X r Z Y
dt

= − − ,                 (1.2) 

 
dZ XY bZ
dt

= − .                 (1.3) 

Where νσ
κ

=  is the prandtl number (ratio between momentum diffusion, ν , and heat 

diffusion, κ ), a

c

Rr
R

=  is the Rayleigh number over the critical Rayleigh number (a 

measure of heat into the system) and 2

4
(1 )

b
a

=
+

 gives the size of the region to be 

approximated (a comes from the solution for ψ  and θ ). All the parameters are taken 
to be positive. 
 
Note that in this paper the author will examine many different parameter values, to 
investigate some interesting features, but the system is only a realistic model of the 
intended fluid convection is r is close to 1. 
 
(1.3) Properties of the Lorenz equations 
 
There are far too many properties of the Lorenz equations to place them all in this 
paper. The author will only highlight the behaviour of a few properties, namely the 
ones needed later in the paper for further analysis of the Lorenz equations. In this 
section it will be proved that the Lorenz equations do not tend to infinity, and will 
show that the system has symmetry. For further information on other properties one 
could look into Sparrow 1982. 
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(1.3.1) Dissipative 
 
A system is dissipative if every orbit eventually moves away from infinity. Or more 
rigorously 3B∃ ⊂  bounded, such that 3

0x∀ ∈  0 0( , )t x B∃  with solution 0( , )t xϕ  
satisfying 0( , )t x Bϕ ∈  0t t∀ ≥ . The Lorenz equations can be shown to be dissipative 
by using one of the Liapunov functions, 
 
 2 2 2( 2 )V rX Y Z rσ σ= + + −                 (1.4) 
 
A Liapunov function is a function that allows us to see whether a system has a stable 
or unstable critical point at the origin, if we have an autonomous system with first 
order differential equations (as with Lorenz system), 
 

( , , )dx F x y z
dt

= , ( , , )dy G x y z
dt

= , ( , , )dz H x y z
dt

= . 

 
A function ( , , )V x y z  that is one time differentiable (in all variables) and satisfies 

(0,0,0) 0V =  is called a Liapunov function if every open ball (0,0,0)Bδ  contains at 
least one point where 0V > . The Liapunov function, in this case, is a metric and that 
is why it has been chosen so that it can show that the Lorenz equations are dissipative, 
more easily than some of the other Liapunov functions. (More details on why this 
Liapunov function is the most convenient can be found in Sparrow 1982: 196) 
 
Then,  

2 2 2 ( 2 )dV dX dY dZrX Y Z r
dt dt dt dt

σ σ= + + −  

        
       2 2 22 ( 2 )rX Y bZ brZσ= − + + − . 

 

Choose the bounded region D  such that ( ) 0dV XX D
dt

∈ ⇔ ≥ , and let c  be the 

maximum of  V  in D . Let E  be the sphere defined by V c ε≤ +  for small 0ε ≥ . 

Then ( )dV XX E X D
dt

δ∉ ⇒ ∉ ⇒ ≤ −  for some 0δ > , and the points on the 

trajectories passing through X  will be associated with a decreasing V . Thus the 
trajectories will eventually enter and remain in E . The author does not have a 
rigorous proof, at this time, that this is a unique solution, however in the numerical 
computations done later in the paper no evidence has been found to the contrary. 
 
It follows from the fact that the divergence of the system is negative, (1 )b σ− + + , that 
the volume of this region will decrease at a rate of exp[ (1 )]b σ− + + , so the set 
towards which all trajectories tend has zero volume. 
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Figure 1.2: A graph of the Lorenz system, numerically computed using MatLab, 
starting at (100,0,100) with values of constants being 810, , 283b rσ = = = . 

 
(1.3.2) Symmetry 
 
The Lorenz equations are invariant under the following transformation: 
 
 ( ), , ( , , )X Y Z X Y Z− − .                (1.5) 
 
This can be seen by simple substitution of the transformation into the Lorenz 
equations, 
 

 ( ( ) ( )) ( )dX dXX Y Y X
dt dt

σ σ− = − − + − ⇒ = −  

 

 ( ) ( ) ( ) ( )dY dYr X Y X Z X r Z Y
dt dt

− = − − − − − ⇒ = − −  

  

 ( ) ( )( )dZ dZb Z X Y XY bZ
dt dt

= − + − − ⇒ = −  

 
The invariance of the Z-axis implies that all trajectories on the Z-axis remain on the 
Z-axis, and approach the origin (See Chapter 3). Furthermore, since 
 

 0, 0 0dXX Y
dt

= > ⇒ >  and 0, 0 0dXX Y
dt

= < ⇒ <  

 
All trajectories that rotate about the Z-axis must move clockwise with increasing time 
(looking from above onto the XY plane). 
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2 Local Bifurcation Theory 
 
(2.0) Preliminaries 
 
This chapter is designed to give the reader an insight into the beautiful world of local 
bifurcation theory. It is by no means the full story on the theory it is just the basic 
properties. Though, it should be enough to enable the reader to understand what is 
going on with the Lorenz equations. (If more information on the theory is needed then 
one could look into Gleick 1987, Hale and Kocak 1991, Guckenheimer and Holmes 
1990). 
 
(2.1) Bifurcation 
 
In simplest terms a bifurcation is a separation of a structure into two branches or parts. 
If one was to watch a tap dripping, one may have noticed the ‘double drip’ 
phenomena, this is where two drips fall in quick succession and then a longer pause 
then another two drips. If the water pressure was to be increased then one would 
observe the ‘quadruple drip’ phenomena, and so on until the system reaches chaos 
(when the bifurcations become so close together the observer cannot distinguish 
between them). 
 
More formally the definition of a bifurcation can be given as: 
 

“A bifurcation can be a qualitative change of the attractor of a dynamical 
system as the result of a moving parameter”.  

 
The above definition is a subtle one, but will become clear by the end of the chapter. 
One analogy one could use to visualise chaos is the probability tree for tossing a coin 
(it is not chaos or any relation to it, however illustrates the sort of form or diagram 
one might expect with chaos). The tree begins with just two branches and after each 
toss the branches will divide into two, hence how four branches and so on. Of course 
this is just to work out the probabilities of obtaining, say three heads in a row, but the 
diagram seems to get very ‘chaotic’ after a large number of tosses, as figure 2.1 
should show. 
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Figure 2.1: A coin tossing probability tree analogy to bifurcation theory. 
 
(2.2) Types of Bifurcations 
 
Now that it has been established that bifurcations exist, the next sensible thing to 
think about is; how many different types of bifurcations exist? To answer this 
question the author will just state that there are four different types. One could do the 
analysis to prove this to be true, but again it is far beyond the level of this paper, and 
besides it does not help the study of the Lorenz equations. 
 
The four types of bifurcations are: 
 

1. Pitchfork Bifurcation 
2. Hopf Bifurcation 
3. Transcritical Bifurcation 
4. Limit Point (Saddle Node) Bifurcation 

 
Transcritical and Limit point bifurcations will not be discussed in this paper, but if the 
reader wants more information they can look into Gleick 1987, Hale and Kocak 1991, 
Guckenheimer and Holmes 1990. 
 
Note that there two different versions of each of the above bifurcations, namely 
subcritical and supercritical bifurcations. Subcritical means that the bifurcation 
happens at a critical point (and creates numerous trajectories) but is stable away from 
that point (trajectories). Whereas, supercritical means that the bifurcation occurs at a 
critical point (and creates numerous trajectories) and is unstable about that critical 
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point (trajectories). The subtle differences can be easily shown by a ‘sketch’ graph of 
a typical bifurcation, and its sub / supercritical versions, as in figure 2.2. 
 

 
 

Figure 2.2: Diagrams illustrating the difference between Subcritical  and 
Supercritical bifurcations. 

 
(2.3) Pitchfork Bifurcation 
 
In this section the most fundamental properties will be discussed. The author will try 
to explain some of the properties with diagrams as well. The Pitchfork bifurcation 
gets its name simply because it looks like a Pitchfork. The standard form of the 
Pitchfork bifurcation is: 
  

 2( )dx x a bx
dt

= −                  (2.1) 

 

From the standard form it is obvious that the steady state solutions are at 0, ax
b

= ± , 

and so we know there are three solutions. 
 
Notice that there is always three solutions, but they are not all stable at the same time, 
but it will not be discussed presently because the whole purpose of chapter 3 is to 
enlighten the reader to the stability of these points with regards to the Lorenz 
equations. 
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Figure 2.3: A sketch graph showing the standard form and steady state solutions of 

the Pitchfork Bifurcation. 
 
(2.4) Hopf Bifurcation 
 
The Hopf bifurcation can be described as the bifurcation of a fixed point to a limit 
cycle (Hale and Kocak 1991). It, like the Pitchfork, has a standard form, but this time 
it is usually given by two differential equations: 
 

 2 2( )dx y a x y x
dt

= − + − −                 (2.2) 

 

 2 2( )dy x a x y y
dt

= + − −                 (2.3) 

 
One can, actually, convert this pair of differential equations by considering the 

complex number z x iy= + , and thus dz dx dyi
dt dt dt

= + , and so we obtain the differential 

equation, 
 

 2 2( ) ( ( ))( )dz i x iy a x y x iy
dt

= + + − + + , 

 

 2( )dz iz a z z
dt

= + − .                 (2.4) 
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Now that the single differential equation for the standard form has been discovered, 

one can extend what is know about this bifurcation, by letting iz e θ=  (and i
i

dx x
dt

=
i

), 

to give; 
 

 ( )idz e r ir
dt

θ θ= +
i i

 and 2(2.4) [ ( ) ]idz e ir a r r
dt

θ⇒ = + −  

 

 2( )r ir ir a r rθ⇒ + = + −
i i

. 
 
Thus, comparing real and imaginary parts one will obtain: 
 

 2( ) [ ( )] ( )r t a r t r t= −
i

                 (2.5) 
 

 ( ) 1tθ =
i

.                  (2.6) 
 
If (2.5) is compared to (2.1) one should see that they are equivalent, i.e. (2.5) 
describes a Pitchfork bifurcation. (2.6) describes the Hopf bifurcation rotating at a 
constant rate. One can solve (2.5) analytically, from noting that; 
 

 3 2 2 2

1 1 1 11 1
2

dr a d a
r dt r dt r r

⎛ ⎞ ⎛ ⎞= − ⇒ − = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 

and then solving for the variable 2

1
r

⎛ ⎞
⎜ ⎟
⎝ ⎠

, as follows: Let 2

1u
r

=  2 2du au
dt

⇒ + = , and 

this is simply solved using an integrating factor 
2 2adt ate e∫ = . All that is required to do 

then is to substitute into the ODE, rearrange and transform back into terms of r , like 
so: 
 

 ( ) ( ) ( )
2 2

2 2 2 2
2

2
at at

at at at
at

d e aeue e u e aK r
dt a e aK

−

= ⇒ = + ⇒ =
+

. 

 
So it is known where r is for all time, and hence the solutions should be able to be 
plotted relatively easily. 
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3 Steady States of the Lorenz Equations 
 
(3.0) Steady state solutions 
 
Using the techniques derived for fluid mechanics, and considering the variables to be 

vectors, we set 0 0X Y Z
t

• • •∂
≡ ⇒ = = =

∂
 (steady state), and let ( , , )x X Y Z= , with the 

steady solutions at the position vector 0 0 0 0( , , )x X Y Z= . Using the above information 
one can see that, 
 

(1.1) X Y⇒ = , 
2

(1.3) X Z
b

⇒ = , 2(1.2) [ ( 1)] 0X X b r⇒ − − = , 

 
with this one deduces that there must be three steady state solutions, at the position 
vectors  

0 (0,0,0)x =  and 0 ( ( 1), ( 1), 1)x b r b r r= ± − ± − − . 
 
It seems a sensible progression at this stage to investigate the stability of these steady 
state solutions, and the effect of changing the variablesσ , r and b. The author will call 
the three steady state solutions, for convenience; 0C , the trivial solution at the origin, 

1C  and 2C , the positive and negative other two solutions respectively.  
 
Let 0 0 0 0( , , ) ( ( ), ( ), ( ))x x y z X x Y y Z zε ε ε ε+ = + + +  so that quadratic terms of ε  can 
be ignored. Hence the following linearized equations are obtained, 

0 0(1.1) ( ) ( ( ) ( ))dx Y X y x
dt

σ σ ε ε⇒ = − + −  but it is known that 0 0 0Y X− = , from 

above, so the equation reduces to 
 

( ( ) ( ))dx y x
dt

σ ε ε= − .                 (3.1) 

 

Also, 0 0 0 0 0(1.2) [ ( ) ] ( )[ ( )] ( ) ( )dy X r Z Y x r Z z z X y
dt

ε ε ε ε⇒ = − − + − − − −  and here 

there is 0 0 0( ) 0X r Z Y− − =  and ( ). ( )x zε ε  is neglected so the equation reduces to  
 

0 0( )[ ] ( ) ( )dy x r Z z X y
dt

ε ε ε= − − − .               (3.2) 

 

From 0 0 0 0 0(1.3) [ ] ( )[ ( )] ( ) ( )dz X Y bZ y X x x Y z b
dt

ε ε ε ε⇒ = − + + + − , where 

0 0 0 0X Y bZ− =  and ( ). ( )x yε ε  is neglected so the solution reduces to 
 

0 0( ) ( ) ( )dz y X x Y z b
dt

ε ε ε= + − .               (3.3) 
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(3.1) The Stability of the point C0 
 
Now that the general forms of the linearized equations have been found, one can 
study the three steady solutions. First the author studies the steady solution point, 0C , 

(0,0,0)x =  to see what behaviour it exhibits. On substitution the three linearized 
equations become:  
 

( ( ) ( ))dx y x
dt

σ ε ε= −                  (3.4) 

 

( ) ( )dy x r y
dt

ε ε= −                  (3.5) 

 

( )dz z b
dt

ε= −                   (3.6) 

 

0 0

1(3.6)
( )

z t
dz bdt

zε
⇒ = −∫ ∫ ln[ ( )]z bt cε⇒ = − + ( ) exp[ ] exp[ ]z c bt A btε⇒ = − = − , 

so it can be shown that  
 

( ) btz Aeε −= .                             (3.7) 
 
For 0 0 as t z t≥ ⇒ → →∞ , implying the Z-direction is stable under small 
perturbations about the point 0C . (3.4) and (3.5) are ordinary differential equations 
(ODEs) of two variables, the easiest way to solve them is to assume that their 
solutions are of the same form as (3.7), namely 1( ) tx Beλε =  and 2( ) ty Ceλε = , it will 
be further assumed that 1 2, 0λ λ ≠  and , 0B C ≠ . So on substitution of the above 
assumptions into (3.4) we get 
 

1 2
1( ) t tB e C eλ λσ λ σ+ = , 

 
which is only consistent if 1 2λ λ λ= = , because if 1 2λ λ≠  then one of them must be 
equal to zero, which has been disallowed by the assumptions. Thus one obtains,  
 

( )B Cσ λ σ+ = .                 (3.8) 
 
A similar exercise with (3.5) leads to the equation, 
 

(1 )C Brλ+ = .                             (3.9) 
 
Hence, by combining these as simultaneous equations one can deduce there is a 
quadratic,  
 

2 (1 ) ( 1)rλ σ λ σ+ + − − ,              (3.10) 
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which has the solutions (given by the quadratic formula), 
 

2
1,2

1 1 (1 ) 4( 1)
2 2

rσλ σ σ+
= − ± + + − . 

 
It can be seen that the solutions’ stability is fundamentally influenced by the value of 
r. If 1r <  then both 1λ  and 2λ  are negative and hence X and Y directions are both 
stable (along with the Z-direction) whereas if 1r >  then one of the sλ  will be 
positive making one of the directions in the X or Y direction unstable. This can be 
shown intuitively by a ‘cartoon graph’: 
 

 
 

Figure 3.1: Diagram illustrating the stability of the steady state solution. 
 
In the graph A represents the point (1 )σ− + , and B and C represent 1λ  and 2λ  
respectively. ( 1λ  is the root where we take the negative square root and 2λ  is the root 
where we take the positive square root).  
 
One should be able to see, therefore, that as r increases C gets closer and closer to the 
origin, and when 1r =  C sits on the origin, so becomes a ‘saddle’ root (neither stable 
nor unstable), and then when 1r > , C becomes the unstable root. 
 
The deduction, therefore, is that for 1r <  the point 0C  is a stable manifold. 
Furthermore, we have shown that no matter the value of r the Z-axis is always stable 
for the point 0C  (any value starting on the Z-axis move towards the point 0C ). 
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(3.2) The Stability of the point C1 and C2 
 
Now to the other steady state solution, 1C  (then use the symmetry of the system to get 
the properties of 2C ). Using (3.1), (3.2) and (3.3) we deduce the linearized equations 
below: 
 

( ( ) ( ))dx y x
dt

σ ε ε= − ,               (3.11) 

 

[ ( ) ( )] ( ) ( 1)dy x y z b r
dt

ε ε ε= − − − ,             (3.12) 

 

[ ( ) ( )] ( 1) ( )dz y x b r z b
dt

ε ε ε= + − − .             (3.13) 

 
As equation (3.11) is equivalent to (3.4), it would seem logical to assume that the 
solutions are of the same form as well. One could deduce this assumption by 
following the same arguments as before, but to save time the author will immediately 
assume it, and see what solutions emerge. So, let ( ) tx eµε α= , ( ) ty eµε β=  and 

( ) tz eµε γ= , where 0µ ≠  and 0t ≥ . Substitution into (3.11), (3.12) and (3.13) leads 
to these three equations: 
 

( )α σ µ σβ+ = ,                          (3.14) 
 

(1 ) ( 1)b rβ µ α γ+ = − − ,              (3.15) 
 

( ) ( ) ( 1)b b rγ µ α β+ = + − .              (3.16) 
 
One can, as before, do back substitution to remove all the constants and define a cubic 
equation for µ . The author will show the critical step to help the reader follow the 
computation; [ ]( )(1 ) ( ) (2 ) ( 1)b b rσ σ µ µ µ σ µ− + + + = + −  is what should be 
obtained after cancelling all the constants, and hence leads to the cubic equation 
below 
 

3 2(1 ) ( ) 2 ( 1) 0b b r b rµ σ µ σ µ σ+ + + + + + − = .                                 (3.17) 
 
This can be solved analytically, and has the solutions, 
 

2 2 3 2 2 33 3( ) ( )q q r p q q r p pµ = + + − + − + − + , 
 

where (1 )
3
bp σ+ +

= − , 
3(1 ) [ (1 )( ) 6 ( 1) ]

27 6
b b b r b rq σ σ σ σ+ + + + + − −

= − +  and 

( )
3

b rr σ+
= . This is particularly messy and complicated and not very insightful. So 
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one tries investigating varying r, to compare with previous result for 0C , it can be 
noted that all three roots will have negative real parts if  
 

(3 )
1

br
b

σ σ
σ
+ +

<
− −

,               (3.18) 

 
This is simply determined by considering (3.17) and let 0 iµ ω= + , so that two 
equations are obtained, namely; 
 

3 ( ) 0b rω ω σ− + =  and 2 (1 ) 2 ( 1) 0b b rω σ σ+ + − − = , 
 
and the first one is used to deduce that 0, ( )b rω σ= ± + , and substitute this into the 

second equation to find that 1r =  or ( 3)
1

br
b

σ σ
σ

+ +
=

− −
.  Thinking about it, having 

0 iµ ω= +  implies an oscillatory motion in the imaginary plane, if r is less than the 
values prescribed then we get exactly as was stated, negative real parts for µ . 
 

Now, define (3 )
1H

br
b

σ σ
σ
+ +

=
− −

, as Sparrow did, then if one restricts oneself to just 

varying r with 10σ =  and 8
3

b = , as Lorenz first did in his paper it can be deduced 

that 470 24.74
19Hr = ≈ , which means that for 1 Hr r< <  both 1C  and 2C  are stable, and 

if Hr r>  then the two complex solutions will have positive real parts, and so the 
equilibria become unstable. At Hr r=  there is a sub critical Hopf Bifurcation, (see 
Chapter 2). This has not been discovered analytically but has been supported by the 
numerical calculations done and the reader will see more on this in Chapter 4.  
 
(3.3) Summary 
 
So, in this chapter it has been deduced that the steady state solutions have the 
following characteristics: 
 
1. 0 1r< < , then 0C  is stable and 1C , 2C  do not exist. 

2. (3 )1
1 H

br r
b

σ σ
σ
+ +

< < =
− −

, then 0C  becomes unstable in one direction, and 1C , 

2C  are stable. 
3. Hr r= , there is a sub critical Hopf bifurcation. 
4. Hr r> , then 0C , 1C  and 2C  all become unstable. 
 
All the above can be illustrated nicely on another ‘cartoon graph’ below: 
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Figure 3.2: Diagram showing the points discovered in this chapter. 
 
Hopefully, it can be seen by this simple diagram that if one takes the abscissa to be r 
and the ordinate to be x then all the steady solution points are there, and the author has 
represented the change of stability by the dashed line. The diagram, also, has the 
stability labelled (S for stable and U for unstable). 
 
Please note that in (3.2) the author only studied one of the points when considering 
the bifurcation (as stated at start of the section), this was due to the symmetry of the 
Lorenz equations (see chapter 1). Hence one does not need to study both as just the 
one has given the information on both solutions. 
 
 
 
 
 
 
 

348849

Page 16



4 The Numerical Approach 
 
(4.0) Introduction 
 
The aim of this chapter is to enlighten the reader to the vast magical world of the 
Lorenz Equations, as this cannot be done analytically the author must take the 
numerical approach. The reader should, by the end of this chapter, see how the author 
reached some of the earlier properties, but also see what else happens when one varies 
the parameters of the equations, and maybe ignite some more complex questions 
about the system. 
 
The reader should note that all the MatLab codes used to do the numerical 
calculations in this paper are in appendix A. If more information is needed on MatLab 
the author directs the reader to, A guide to MatLab, Highman 2002.   
 
The author wants to mention that in all the graphs of the Lorenz system seen in this 
chapter, and indeed this paper, appear to have crossing trajectories, these are not in 
reality crossing but are just due to the projection of a 3D image onto a 2D plane. If 
one had a 3D model of the trajectories one would see that no trajectories cross. 
 
(4.1) Approaching Chaos 
 
The author will first concentrate on varying one variable, r, as Lorenz did. The reason 
for this approach is to see what happens as one closes into the Hr  as defined in the last 
chapter, this will give insight into the behaviour of the whole system at differing 
variables.  
 

Let 10σ =  and 8
3

b = , hence, as defined by chapter 3, 470 24.74
19Hr = ≈ . By setting 

22.2r = , the theory states that there should be steady state solutions at 
 

 ( )848 848 106, , 7.52, 7.52,21.2
15 15 5

⎛ ⎞
± ± ≈ ± ±⎜ ⎟⎜ ⎟
⎝ ⎠

.              (4.1) 

 
With r  set, the theory implies that the system should be stable (that is any trajectory 
should in fact tend to one of the given steady state solutions). To see if the numerical 
solutions tie in with the theory the author used MatLab to draw the graphs of the 
trajectories for the above variables. The author has set the initial conditions to (10, 0, 
10), but this should not effect the steady state solutions, just the amount of time 
needed to reach it. 
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Figure 4.1: Graph of X vs. Y to see the steady state solution. 
 

 
 

Figure 4.2: Graph of X vs. Z to see the correlation of theory and numerical analyses. 
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Figure 4.3: Graph of Y vs. Z  completing the vision of Lorenz system. 
 

It may seem excessive to include all the different plane views for this value of r , (and 
indeed it shall not be done again, the author from here on will concentrate to the X-Z 
plane view although there are two other planes to consider), but the author wanted the 
reader to see the different angles of the solutions to get a real feel for system and to 
emphasise how neatly the numerical and analytic solutions tie together. By looking at 
the graph the author hopes one can see that the steady state solutions are exactly those 
predicted by the theory. 
 
One thing the theory did not suggest was the existence of a pre-chaotic state. Figure 
4.4 is a perfect illustration, with r  set to 22.2, the author examined time versus X to 
see what it shows, and one can see the pre-chaotic state where the solution seems to 
be chaotic but then settles down to oscillatory and finally tends to the steady state 
solution. 
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Figure 4.4: Graph showing pre-chaos characteristics. 
 

(4.2) Shifting the chaotic boundary 
 

In the previous section the author chose 8 11110, ,
3 5

b rσ = = =  to show some of the 

characteristics of the system, one now knows that 24.74Hr ≈  for those variables, 
hence for  Hr r<  the system has two stable steady solutions and for Hr r>  then the 
system has unstable steady solutions. One can vary Hr  by simply varying σ  and b , 
using formula (3.18), this will change chaos threshold. 
 

If one starts with 810,
3

bσ = =  and 28r = , say, then it is clear that the system is in 

chaos, now if the system then, for some reason, changes and the value of r  decreases, 
does the chaos disappear, and if so is it exactly at Hr  or at some value above or below 
it? 
 
Well the answer is that chaos has to disappear at some point, otherwise chaos would 
then reign over all r and it is known that this is not the case, the question on when it 
disappears is a lot more difficult. In the last chapter the reader may remember that the 
author stated that at Hr  there is a subcritical Hopf bifurcation, this is what affects the 
chaos boundary. The subcritical Hopf draws the chaos back into the stable region, but 
in this region the trajectories are unstable and so could return to the steady state 
solution at any time. The author would like the show a simple graph / diagram for this 
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however it is not a simple situation so one cannot be put in, however the author refers 
the reader to Sparrow 1982 which gives good diagrams and explanations of this 
phenomenon. 
 
(4.3) Sensitivity to Initial conditions 
 
One property of the Lorenz equations not yet discussed in this paper is the sensitivity 
to initial conditions. It is the most fundamental property of the system and the reason 
the author has waited until now to discuss it is because one needs to understand the 
complexity of the system before one can appreciate the importance of this property.  
 
If one were to start any system from two extremely close points then common sense 
would tell us that the trajectories should remain extremely close for all time. 
However, this is not the case with the Lorenz equations, in fact the contrary is true, no 
matter how close you put two starting points, within a relative time scale the 
trajectories will part and take completely independent paths. 
 
If one starts the Lorenz equations from 1 2 10X X= = , 1 2 0Y Y= = , 1 10Z =  and 

2 10.00000000001Z =  then for the first 25 time units the trajectories appear to be 
identical but beyond 30 time units they are totally unrelated to each other. 
 

 
 

Figure 4.5: Graph showing the separation of two trajectories separated at start by 
1010−  units. 
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It is precisely this property that makes long term predictions of physical systems 
impossible. It devastates the classicalists’ view of the world. The rate at which the 
trajectories separate is phenomenal and is known as the Liapunov exponent, in this 
case it is 

5
2 se , (this only applies at the initial separation). 

 
(4.4) Chaos reigns 
 
It is known that chaos begins once the system passes the critical point Hr , but does it 
continue forever? Well yes in a sense it does, once the system is beyond Hr  chaos 
remains forever. There are a few properties to mention which are period doubling, 
homoclinic explosions and intermittent chaos. All these properties will not be 
discussed formally in this paper as is far too in depth, however in the next chapter the 
author will explain what they are and why they need more exploration. 
 

The classic view of this system is below, and the parameters are 810, , 28
3

b rσ = = = , 

and starting value of (0.1, 0.1, 0.1). The view seen is the same for all the chaos 
exhibiting parameters of the Lorenz equations. The author did not discussed small 
values of r because the system is very easily resolved at such values and wanted to 
spend more time on the more interesting properties of the system. 
 

 
 

Figure 4.6: The classic ‘Lorenz Butterfly’ showing the generic shape of all solutions 
in the chaos region of the system. 
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5 Further Interesting Properties 
 
(5.0) Preliminaries 
 
This chapter is to highlight some properties the author has come across in the study of 
the Lorenz equations, but has not had time to fully develop the analysis or proofs. The 
properties are interesting so need to be mentioned but to get full descriptions the 
reader must refer to Sparrow 1982, Gleick 1987 or Hale and Kocak 1991, indeed if 
this chapter inspires the reader to investigate further, those books are a good place to 
start. 
 
The reader must note that in this chapter the author will make statements without 
proof or indeed the total knowledge to prove the statement, the author just knows the 
properties exist by exploration of the system. 
 
(5.1) Period Doubling Windows 
 
The author came across this property when investigating various values of r well 
above that of Hr . The property is essentially where the trajectories enter a stable orbit 
around the two steady state solutions, even though the steady state solutions are 
unstable. The author has discovered three such windows, but there maybe more. The 
windows the author has discovered may not be one hundred per cent accurate but will 
illustrate the property very well.  
 
The first such window the author discovered is for values 99.53 100.79r< < . The 

window has been defined with 10σ =  and 8
3

b = , the window size is calculated from 

numerical computations in MatLab. In this period doubling window the trajectories 
move around one steady state solution and then twice around the second and back to 
the first once more (denoted [1-2-2]), as seen in figure 5.1.  

348849

Page 23



 
 

Figure 5.1: Graph illustrating the stable orbit trajectory when 100.5r = . 
 

As the value of r decreases the stable orbit widens or doubles, creating the orbit to do 
as above but then repeat it once more before returning to the original orbit (denoted 
[1-2-2-1-2-2] or [1-2-2]2). The system continues to cascade in this way to the lower 
bound of the window. 
 

 
 

Figure 5.2: A graph illustrating the doubling effect of the stable orbit as r is 
decreased to 99.7r = . 
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If one continues to decrease the value of r still further not only does the cascade effect 
still occur but one also notices that the orbits reflect and therefore the trajectories orbit 
the other steady state solution twice whereas before it would have been just one (i.e. 
[1-2-2] to [2-1-2]), as demonstrated in figure 5.3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5.3: Graphs showing that a small change in r will result in the orbits flipping. 

 
The second period doubling window the author noticed is 145 166r< < . In this 
region much more complicated scenarios occur, however there is not enough time to 
discuss them all in this paper. The author will highlight the fact that this period 
doubling window is symmetric about the two steady state solutions (denoted [2-2-2]), 
as figure 5.4 illustrates. 
 

 
 
 

Figure 5.4: Graph of second period doubling window at 155r = . 
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The third and final period doubling window is 214.36 r< . There is no upper bound as 
the author tried many values and always found a period doubling. In fact, as one 
increases r  further and further the orbits become more and more stable periodic, as 
figure 5.5 should show. 
 

 
 

Figure 5.5: A graph of the last period doubling window at a very large value of r. 
 

(5.2) Intermittent Chaos 
 
In the search for answers to the last section the author also noticed a quirky property. 
It seems that when the trajectories are close to a period doubling window (below the 
window or above) the trajectories exhibit intermittent chaos. This is where the 
trajectory can be stable oscillatory and then suddenly switches to chaos and then 
revert back to the oscillatory trajectory. Moreover, as one moves further and further 
from the windows the intermittent chaos seems to become more and more frequent 
until it becomes dominant and then pure chaos returns. The author does not have any 
proof of why this happens but it is an interesting and unusual property of the Lorenz 
equations. 
 
In the eyes of the author what happens is: Chaos exists and as one moves towards the 
periodic window intermittent chaos appears until chaos ceases leaving periodic orbits 
in the window and then as one moves out of the window the intermittent chaos returns 
once more and finally as one increases still further the chaos totally takes over once 
again. Hopefully, figure 5.6 should show the reader what intermittent chaos can look 
like if they wish to investigate the property further. 
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Figure 5.6: A graph showing intermittent chaos. 
 

(5.3) Homoclinic Explosions and Small values of b  
 
The author does not have any real knowledge of homoclinic explosions, however 
whilst researching this project there was an awful lot of information on the subject 
and thus would suggest the reader to study them if the reader wants to study the 
Lorenz equations still further. The author can suggest Sparrow 1982 and Gleick 1987 
as two good books to start on. 
 
The author noticed a very disturbing graph when studying the Lorenz equations using 
MatLab, and investigating different values of σ  and b . The graph that was derived 
did not look like any of the others and started the search an explanation. The author 
searched all the literature and found very little to start with but then when looking 
through the Sparrow book 1982 the author found the answers. If the parameter (5.1) is 

greater than 2
3

 then there is a stable symmetric orbit that exists r∀  and which winds 

around the z-axis. 
 

1
2b

σπ +
=

+
.                  (5.1) 

 
This property is strange, and according to Sparrow 1982, there are a few other 
restrictions to the strange behaviour. If 1π >  then we get as described above and if 
2 1
3

π< <  then there is a pair of non-symmetric, non-stable periodic orbits which do 

not wind around the z-axis. When this is the case the Hopf Bifurcation does not occur 
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and 1C  and 2C  remain stable r∀ . The author wants to mention that the above 
parameter (5.1) and the above statements have been taken from Sparrow 1982: 149. 
 

 
 

Figure 5.7: The graph that revealed more secrets of the Lorenz equations, the 
parameters are set to 10, 28rσ = =  and 1

2b = . 
 

Figure 5.7 is the graph that aroused the author’s interest in small values of b, and as 
such lead to the discovery of the parameter (5.1). One can clearly see the symmetric, 
stable orbit around the z-axis. 
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6 Conclusion 
 
(6.0) Conclusion 
 
The author hopes that from this short paper it is clear that the system defined by 
Lorenz in the 1960s is a most detailed and intricate system. It has many features 
beyond the scope of this paper as mentioned many times before and if the reader still 
has a thirst for more then the author would advise reading all of the references as they 
will widen the mind to this system and its properties.  
 
The Lorenz system has been studied in abundance now and it is assumed that most of 
the mysteries of the system have been explained. One would use this system as a 
simple introduction to chaos theory before moving into much more complex systems. 
Indeed there have been many more, higher dimensional, extensions to Lorenz’s 
system which have been studies and have similar properties to this dimensional 
version although details are far more complicated. 
 
In writing this paper the author has come to accept that chaos is the normal state for 
physical systems, and that much more work is needed to understand what is going on 
and how to computate these systems. For now it seems we will be restricted to 
numerical analysis of the systems, which can still explain a great deal about the 
system. 
 
Hopefully, the reader will have heard of the butterfly effect before reading this paper, 
this refers to the sensitivity to initial conditions. It is precisely this system that has 
lead to this popular phrase, although it is usually explained using an old folk poem in 
which a misplaced nail causes a kingdom to fall (Gleick 1987: 23). 
 
(6.1) Afterword 
 
The author would like to study the system further to complete the picture, but it would 
require much more time and more skills not yet attained by the author. With this paper 
have come more questions than answers; as one paper in 1963 completely changed 
the worlds view on deterministic equations is there another shrewd mind thinking up 
some other paper where our view of the world will change again. The author suspects 
that the story is not yet fully told, and as a subject it will expand and diversify for 
many years to come and one day the whole truth of chaos may be revealed for all to 
see. 
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8 Appendix A 
 
Below is the MatLab code used throughout this project and has been modified several 
times to produce different graphs and different computations. 
 
% Lorenz ODE solving function 
 
tspan = [0 100];                             % Solve for 0<=t<=100 
options = odeset('MaxStep',0.1);  
y0 = [1;0;1];                                % Initial conditions 
[t,y] = ode45(@LORENZDE1,tspan,y0,options); 
 
plot(y(:,1),y(:,3),'red')                    % Plots (y_1,y_3) phase space 
 
xlabel('X value','fontsize',14) 
ylabel('Y value','fontsize',14) 
zlabel('Z value','fontsize',14) 
title('Lorenz Equtions','fontsize',16) 
 
The code below is the function file LORENZDE1 which was used to change the 
parameters in the numerical analysis. 
 
function dydt = lorenzde(t,y) 
 
%LORENZDE   LORENZ EQUATIONS 
 
% dy/dt = lorenzde(t,y) 
% dy(1)/dt = a*(y(2)-y(1)); 
% dy(2)/dt = r*y(1)-y(2)-y(1)*y(3); 
% dy(3)/dt = y(1)*y(2)-b*y(3); 
 
dydt = [10*(y(2)-y(1)); 28*y(1)-y(2)-y(1)*y(3); y(1)*y(2)-(8/3)*y(3)]; 
 
The third code is what can be used to see the sensitivity of initial conditions. It solves 
the Lorenz equations twice with different initial values and then plots then together so 
that it can be observed. 
 
% Lorenz ODE solving function 
tspan = [0 50];                             % Solve for 0<=t<=100 
options = odeset('MaxStep',0.1); 
y0 = [10;0;10];                                % Initial conditions 
[t,y] = ode45(@LORENZDE1,tspan,y0,options); 
plot(t,y(:,1),'blue')                        % Plots (y_1,y_3) phase space 
xlabel('t','fontsize',14) 
ylabel('X value','fontsize',14) 
zlabel('Y','fontsize',14) 
title('Lorenz Equations','fontsize',16) 
hold on 
y1 = [10;0;10.00000000001]; 
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[t,y] = ode45(@LORENZDE1,tspan,y1,options); 
plot(t,y(:,1),'green') 
xlabel('t time','fontsize',14) 
ylabel('X value','fontsize',14) 
zlabel('Y','fontsize',14) 
title('Two trajectories separated at start by 0.00000000001 units','fontsize',16) 
hold off 
 
These are the only codes needed to produce all the figures in the text and more 
besides. If the reader needs any more information the author suggests they read 
Highman, 2005. 
 
Please note that in the numerical analysis used for this paper the Runge Kutta method 
was used, which employs 4th order accuracy, rather than an Euler simple 1st order 
accuracy. It is important to note this because it means that the numerics can be 
regarded as reliably accurate. Again if the reader requires more information the author 
suggest reading Numerical Recipes in C: The Art of Scientific Computing, 16, 710-
714, it will be very helpful. 
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