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A B S T R A C T

Close coordination between generation and transmission operations and planning is critical to cost effective and reliable energy production and delivery; such
coordination, in the presence of ownership diversity, is indeed a primary and challenging goal of regional transmission organizations in the US and similar orga-
nizations worldwide. Optimizing these sectors separately overlooks potential synergies that may allow for more effective design and operation of power systems.
Coordinated expansion planning (CEP), where both generation and transmission decisions are coordinated, has become especially relevant to present day planning
and operations. There are various reasons for this, some of which include the desire to obtain the most environmental and economic benefit from deeper penetration
of renewable energy sources, the need for effective deployment of emerging storage technologies, opportunities to capture and harness the electrification of the
transport sector, increased interdependencies with other sectors (e.g., gas), and accommodating increased shares of distributed energy resources in distribution grids.
These changes result in increased short-term and long-term uncertainties, as well as an increased need for improved representation of multiscale temporal and spatial
dynamics (e.g., representing hourly or sub-hourly intertemporal couplings in multi-decadal expansion models). The purpose of this work is to characterize the state-
of-the-art in CEP models and identify technical challenges of grid development planning and research and development (R&D) needs for the new generation of these
CEP models.

1. Introduction and overview

The material of this work (sections 1–10 and abstract) is adapted
from [1] with permission from The Electric Power Research Institute. It
consolidates [1] to make key points from this material available in a
journal format while also extending the insights of [1] in several areas.

Because electric power system infrastructure (i.e., generation,
transmission, and distribution components) is capital-intensive and
long lived, planning decisions must be assessed carefully before making
commitments that are difficult to reverse. Expansion planning is a
general term that refers to the processes associated with this assessment
and subsequent decisions. Expansion planning is typically performed
over a time interval of ~10–40 years which is referred to as the decision
horizon. The ultimate aim of expansion planning is to identify infra-
structure investments in terms of technologies, amounts, locations, and
timing that minimize the present value of revenue requirements (or
costs in a restructured environment). These include capital costs of new
investments plus fixed and variable production cost over the decision
horizon. Central to this aim is that the infrastructure investments are
generally comprised of multiple technologies, and so the investment

result when combined with existing technologies, can be considered as
a technology portfolio. Coordinated expansion planning (CEP) tools,
which combine both generation and transmission planning, facilitate
this process by providing information on how alternative investments
enhance or restrict the flexibility of the grid to respond to possible long-
run technological, economic, and policy developments. These expand
upon traditional resource planning tools to also consider transmission
in a coordinated fashion. Because CEP also models supply-side and
distributed energy options, it can effectively support the integrated
resource planning processes as well as proactive grid planning [2] by
anticipating how diverse supply, storage, demand-response, and
transmission participants will change where, when, and what invest-
ments they make.

The objective of this work is to identify the technical challenges of
grid development planning and R&D agenda that would, upon execu-
tion, bring CEP tools to a maturity level to enable their day-to-day use
within electric infrastructure planning organizations, for traditional and
extended planning functions. This agenda is covered in the following
nine sections. Section 2 describes CEP modeling needs driven by mar-
kets and revenue adequacy needs. Section 3 identifies four needs for
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additional modeling fidelity within the CEP: production simulation,
distribution representation, congestion management, and effects of
short-circuit currents. Section 4 addresses methods for representing
uncertainty. Section 5 outlines sources of computational complexity
and solution methods to alleviate it. Section 6 describes the need for,
and methods to, include weather effects within the CEP. Section 7 ex-
amines representation and analysis of resilience. Section 8 focuses on
multi-sector modeling, i.e., the inclusion of additional infrastructure
systems such as natural gas networks and transportation systems within
the CEP. Section 9 identifies characteristics of software needed to va-
lidate plans post simulation. Section 10 concludes.

2. Modeling for markets and renewables

The ongoing grid transformation from fossil-fueled resources to re-
newable resources is forcing adjustments to CEP applications. Use of
CEP in unbundled markets is equivalent to assuming that the trans-
mission planner is anticipating the investment and operations reactions
of a competitive energy market; this perspective can account for market
failure, as well as the changes brought by large amounts of zero-mar-
ginal-cost variable renewables. The use of CEP models by planners in an
“anticipative/proactive” mode assumes that decisions not under the
planner’s control can be predicted. If it is assumed that the latter de-
cisions are made in a perfectly competitive environment, then the
planner can use a CEP formulated as a single optimization model with
an objective of maximizing net benefits [3]. However, there are many
“market failures” which mean that, at best, the perfect competition
assumption is a useful approximation and, at worst, the assumption
results in large distortions in the results. Some failures can prevent
potential investors from responding to market fundamentals in the way
anticipated by proactive CEP models. These include nonconvexities,
financial market incompleteness, environmental externalities, im-
perfect coordination among subregions, and pricing distortions. More
elaborate anticipative models based on bilevel programming can be
used to model generator and other reactions when these market failures
are present, but are presently difficult to scale and solve. A particular
issue, in markets across Europe and the US, is that energy prices have
been driven downwards by the rapid expansion of solar and wind ca-
pacity. Regulators, market designers, and especially market participants
are asking how investments in needed resources can be supported in
this situation, especially if energy prices are capped or long-run con-
tract markets are limited. A useful perspective on this problem can be
obtained by considering a CEP that has two features not traditionally
included in capacity expansion models: (1) demand curves and cur-
tailment penalties and (2) co-optimized reliability services. For the first
feature, if CEP considers price-elastic demand, in which higher prices
result in voluntary load reduction, or involuntary curtailment with a
penalty level that reflects the value of lost load, then market prices rise
during periods of scarcity. Such scarcity pricing can, in theory, in-
centivize the optimal mix of generation investment [4]. In a market
with frequent zero or negative prices as a result of renewables, the
outcome will be price spikes during scarcity periods, signaling the need
for investment. In regards to the second feature, if frequency regulation,
operating reserve, and ramping needs of a market are captured by ex-
plicit representation of the requirements and supply of these com-
modities, and realistic penalties for any shortfalls, then these can be
significant revenue streams for new investments. Incorporation of ex-
plicit demand curves for these services, in which marginal penalties for
non-supply increase as the shortfalls grow, allows scarcity to be re-
flected in market prices for energy, even if loads themselves are treated
as fixed.

Under the above assumptions, and if the CEP is a convex optimi-
zation problem (a strong assumption), the cost-minimizing/benefit
maximizing plan yielded by a CEP is supported by the prices of the
energy and other commodities. That is, every investment will earn
revenues from the energy and reliability services markets equal to or

greater than its investment and operating costs, where prices are cal-
culated by the shadow prices of the market-clearing constraints for the
various commodities in the market [4], and no investor can change
their decisions and earn a higher profit under those prices. Despite the
high frequency of zero or negative prices, there will be enough price
spikes and high enough compensation for ancillary services that the
right amount of each generation type, as well as storage and demand-
side investments, will, in theory, be supported by the prices. Com-
plemented by fully-functional financial markets, in which those who
desire long-term contracts or other hedges against short-term risks can
buy them, well-designed short-term markets for energy and ancillary
services can, in theory, provide most or all of the revenues needed for
optimal investments from CEP. However, spot markets have limitations,
manifested as market failures; which render this supporting-price result
less credible and cast doubt on whether spot markets are likely to be
sufficient.

An alternative being discussed in some policy circles [5] to dealing
with the revenue issues that arise in markets with high renewables is to
expand the role of CEP models. In this proposal, their role would ex-
pand from merely suggesting transmission and other investments to
running auctions, similar to today’s capacity markets. They would in-
stead, allow for the full range of Integrated Resource Planning (IRP)
options, so that transmission and alternative resources (supply- and
demand-side) would compete against each other by submitting offers
which, if cleared by the planning model, would be awarded long-term
contracts based on the shadow prices for the constraints in the model.
Both existing resources and possible new resources would compete. The
goal is to overcome a major market failure: the lack of a robust market
for long-term capacity commitments. Investors whose offers are ac-
cepted would receive certain financial guarantees in exchange for ob-
ligations to maintain the existing resources or build the new ones.
Transmission proposals that are accepted would also receive guaran-
tees.

There are many important R&D questions that concern the inter-
action of planning methods and markets. Examples include: Can dif-
ferences in nature and timing of investment be explained in terms of the
differences in wholesale market design? What market designs in-
centivize better regional coordination across control areas, which
should lead to (i) more effective integration of new renewables, (ii)
lower operational costs and (iii) more efficient investment? How do
differences in mechanisms for allocating transmission charges impact
supply investment?

Separate and decentralized ownership of generation, transmission,
and distributed supply and storage systems raises questions about how
CEP modeling can help coordinate the interests and actions of the
various market parties. By modeling the interests and strategies of
participants in electricity markets, can CEP models address the in-
centives for efficient participation, also called “incentive compat-
ibility?” Incentive compatibility is when financial incentives make
participation and investment profitable when such participation would
increase the overall economic efficiency of the market, while at the
same time discouraging participation and investment when it would not
benefit the market as a whole. There are several levels of incentives. For
example, regulators (e.g., the Federal Energy Regulatory Commission
(FERC), state commissions, and ISOs) provide investment incentives in
wholesale markets in the form of rates-of-return and permitting, and
also encourage cooperation among neighboring systems, as in FERC’s
Order 1000. In turn, transmission owners and operators provide in-
centives for building and siting assets by their interconnection rules,
pricing for transmission services, and creation of zones for acquiring
ancillary services. Meanwhile, retail ratemaking provides critical in-
centives for distributed energy production in retail ratemaking.
Bringing together research on CEP modeling with the economic lit-
erature on incentives (as described in [6]) could provide theoretical
frameworks that are practical and effective for encouraging efficient
mixes, locations, and types of investment. The following ideas are core
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in incentive theory. Conflicting objectives and decentralized informa-
tion, which are key characteristics of electricity system governance, are
two integral ingredients. Another core idea is that each market par-
ty–consumers, load serving entities system operators, grid owners, or
generation investors— pursue their private interests which are shaped
by incentives. Though the incentive theory paradigm has limitations, its
practical application would be a step towards increasing relevance and
effectiveness of CEP models.

A specific set of questions arise if CEP is considered as a framework
for investment auctions. What then would be the relationship of set-
tlements in the CEP-administered long-term market and spot markets?
What would be the role of imbalances and how would they be settled,
both in short-term markets and longer-term investment obligations?
How would obligations be enforced, since bankruptcy might be a
tempting hedge for new projects? How would long-run policy, eco-
nomic, and technology uncertainties be factored into the auction? Who
would be responsible for revenue inadequacies for the auction that
could result from, for instance, load growth that does not materialize,
or up-front payments to resources that are not built?

3. Enhanced modeling fidelity

This section addresses four modeling features where expansion
planning applications require enhancements. These features are pro-
duction simulation (PS), distributed energy resources (DER), congestion
management, and the influence of short circuit current levels.

To account for flexibility requirements while maintaining compu-
tational tractability, CEP must provide for chronological representation
of operating conditions. One approach is to employ a chronological
Production Simulation (PS) in the CEP, and implement methods to re-
lieve computational intensity. Another approach is to provide, as an R&
D objective, that a standard (with non-chronological “internal” PS) CEP
iterate with an “external” (chronological) PS, perform a performance
test in each iteration, and then (when over- or under-performing)
identify adjustments to CEP constraints necessary to achieve desirable
performance in the next iteration of the external PS. Such an approach
is illustrated in Fig. 1.

Given the current interest in Distributed energy resources (DER),
greater modeling efforts should be made to adequately analyze and
capture their effect within PS embedded on the bulk system expansion
through the displacement of energy and flexibility services and through
loss reduction. If DER is modeled as a decision variable, then this in-
fluence may also come through competing infrastructure investments.
One way to capture these three influences is to represent each trans-
mission-level load bus with a single distribution feeder having a limited
number of segments, e.g., three, as illustrated in Fig. 2. This approach
enables the capture of losses, the need for feeder capacity expansion,
the effect of distribution load and DER at different electrical distances
from the transmission bus, and the performance evaluation of portfolios
of options to provide support at the distribution level during high-load,
low solar time periods. More extensive distribution systems may be
modeled as well, but in such case, a decomposition-by-network parti-
tion (possibly one node for each transmission load bus), with parallel

programming, is necessary to maintain computational tractability. This
suggests an R&D goal is to implement within the CEP a high degree of
flexibility in representing the distribution network topology at each
bulk system load bus, with options for automatic or manual feeder re-
presentation, a goal which leads to identifying what degree of dis-
tribution-related modeling is needed.

Congestion management methods are often classified as cost free or
non-cost free. According to [7], cost free includes activities with small
marginal operational costs such as operating FACTS devices while non-
cost free techniques would include re-dispatch of generation or cur-
tailment or loads. More granular stratifications of congestion manage-
ment divide methods into four categories: sensitivity factors, auction
based, pricing mechanisms, redistribution and willingness to pay [8]. A
useful research and development agenda of congestion management
method would determine what methods are most effective at reducing
costs, as well as what methods can be accommodated by computa-
tionally tractable models. For example, with regard to the classifica-
tions of [7], non-cost free approaches are closely related to accurately
capturing a subset of the PS operational setpoints to simulate over since
representing all setpoints is generally considered intractable. Different
methods have been proposed [9,10]. However, given each method will
choose a different subset of operational setpoints, can we determine a
single method as being fundamentally superior or does PS operational
setpoint selection need to be tailored to the specific system and model
constraints under study? With regard to cost free approaches, such as
FACTS, long term planning studies are often conducted using Direct
Current (DC) power flow model contained with the PS to remain
computationally tractable. However, the full benefits of many FACTS
devices cannot be realized in DC power flow formulations since it does
not capture voltage variation or reactive powerflows. Research into
moving long-term planning studies into AC powerflow or approx-
imating the full benefits of FACTS devices without requiring an AC
powerflow would be useful.

A final modeling improvement is to account for changing short
circuit currents (SCCs). There are two reasons which motivate this need.
First of all, the addition of new synchronous generation in the network,
together with additional transmission, causes SCCs to increase. To
avoid violating constraints representing circuit breaker and transformer
ratings, fault current limiters may be needed, resulting in additional
investment cost to be included in the objective function [12]. Recent
research in this area includes [11], which implements a novel Benders
decomposition application. Within this work the master problem de-
termines the transmission expansion plan and a linearized short circuit
analysis is performed in one of 3 sub-problems. In [12], short circuit
levels are taken into account within a transmission and generation
expansion plan with emphasis on wind farms. In contrast to [11,12,13]
does not focus on capital investments but rather substation topology
changes such as bus splitting to reduce short circuit levels. What this
body of research suggests is that short circuit levels are an important
security consideration for properly sizing equipment which affects total
investments costs and optimal geographic placement of new invest-
ments.

SCCs also have significance with respect to expansion planning as a

Fig. 1. CEP with external chronological production simulation to ensure flexibility (Adapted from [1]).

P. Maloney, et al. Electrical Power and Energy Systems 121 (2020) 106089

3



metric associated with bus stiffness. As the amount of synchronous
generation is reduced, replaced by inverter-based (asynchronous) gen-
eration, SCC tends to reduce (alleviating the excessive SCC problem
addressed in the previous paragraph); but it also results in so-called
“weak grid” conditions. This is particularly the case where inverter
based resources are located in regions with low short circuit strength
due to sparse transmission and relatively few synchronous resources in
the region [14]. These low short circuit conditions can cause challenges
related to inverter controls, where bus voltage stiffness is reduced and
the phase-locked loop of grid-following inverters may not properly
operate [15]. This can result in voltage instability. Screening metrics
have been developed, such as the Short Circuit Ratio (SCR), which
compares the interconnected grid’s short circuit MVA to the MW of the
interconnection plant at the point of common coupling. A low SCR can
indicate potential issues; however these are for single generator inter-
connections and may not illuminate situations where many plants are
interconnecting. Therefore other metrics are also often used, such as the
Weighted Short Circuit Ratio developed by ERCOT [16], the combined
SCR developed by GE [14], and a metric to examine critical clearing
time developed by EPRI [17]. In cases where some or all of these me-
trics flag a potential instability issue, more detailed point on wave si-
mulations may be needed for plant interconnection studies, and the
inverter controls may need to be tuned to avoid instabilities. This effect
may also motivate greater use of grid-forming inverters that are in-
sensitive to this effect. As inverter-based resources continue to grow,
addressing this influence will become increasingly important in long
term planning studies, and suitable screening metrics could be used to
flag potential additional costs, without necessarily needing to do full
three phase studies. As an example, a screening tool such as the Grid
Strength Assessment Tool developed by EPRI that runs with commercial
positive sequence software tools could be used to screen potential issues
based on outputs of a coordinated expansion plan, and relative costs
assessed for additional control capabilities.

4. Uncertainty models for expansion planning

Because the future is uncertain (e.g., we do not know what natural
gas fuel price will be in 5 years), there is a strong need to represent
uncertainty within CEP models and capture its influence on decisions.
As suggested in [18], uncertainties can be classified as either global or
local. The authors of [18] interpret global uncertainties as the model
parameters that have significant long-term impact capable of being
represented by a long-term trend (e.g., a forecasted annual demand
growth rate) and local uncertainties as the inherent randomness or
short time scale fluctuations that occur around a long-term trend.

Model parameters might have both attributes, e.g., a hydroelectric
dam’s 30-year production trend could significantly increase or decrease
due to climate change while also exhibiting short term random fluc-
tuations within its longer term trend.

One way to include uncertainty within a planning procedure is via a
deterministic sensitivity analysis where the model is treated as de-
terministic but varied across several runs; each with a different set of
model parameters. Upon conclusion of the runs, a second, separate
optimization procedure or metric(s) is used to rank the plans or extract
information from each plan into a master plan. California ISO employs
such a procedure based on least regret [19] while Mid-Continent ISO
has used a similar procedure in developing Multi-Value Projects (MVPs)
[20].

Alternative approaches model many scenarios within a single opti-
mization formulation, rather than optimize scenarios independently of
each other. This is advantageous in that when faced with future un-
certainty, it more realistically captures the need to sometimes make
decisions that are non-optimal in any single scenario, but on average
perform well when exposed to a variety of scenarios. These types of
decisions are difficult to extract from a series of deterministic plans. The
disadvantage, however, is the modeling of many scenarios within a
single optimization framework is often significantly more computa-
tionally intensive than solving each of the scenarios separately in a
sensitivity-analysis approach. Several approaches exist for this multi-
scenario based planning method which include stochastic programming
[3] and adaptive programming [18].

Fundamental to both approaches is the need for an appropriate
scenario selection method. Widely used scenario selection methods are
described in [21,22]. Multi-scenario-based planning is complicated by
the significant increase in model size that comes with it, as moving from
a deterministic scenario problem to a two-scenario stochastic-based
problem often doubles the problem size. Furthermore, the process of
scenario selection itself can become computationally intense. Thus, we
observe that modeling uncertainty comes at significant cost. A metric
for determining the value of model enhancements is developed in [23]
that indicates that the value of uncertainty modeling may be greater
than the value of improving fidelity in transmission, unit commitment,
or time resolution.

In regards to uncertainty modeling, there are two major R&D issues
to address. First, to facilitate scenario reduction, it would be useful to
provide capability to identify uncertainties having the most impact on
decision variables. Second, different ways of treating uncertainty lead
to different decisions and/or decisions that are distinctly different. How
does performance vary across tools, such as stochastic optimization,
robust optimization, robust decision making, and adaptive

Fig. 2. DER modeling approach (Adapted from [1]).
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programming in terms of, for example, accuracy, compute time, ability
to decompose, risk metric performance, or ability to build robustness
for both local and global uncertainties [23,24,50]? Do some un-
certainty-based planning tools perform best in certain situations or with
regard to particular metrics?

5. Computational complexity

A fundamental problem of solving the CEP is that greater model
fidelity results in longer computational times. This is of particular
concern because compute time growth can be exponential with problem
size. Thus, a critical aspect of generating the planning model – that
necessarily must compromise on model fidelity – is determining which
features increase model fidelity the most, and which features provide
the best return on fidelity per unit of computation. Developing a CEP
analysis requires simultaneous consideration of all of these features, as
increasing model fidelity in one dimension requires a decrease in one or
more other dimensions to maintain acceptable compute time. The most
influential features are illustrated in Fig. 3 and are further described
below.

1. Temporal Resolution – The number of distinct operating conditions
depends on the decision horizon together with its number of in-
vestment years, the number of purely operational years (and
therefore unavailable for investments), and number of operating
intervals as quantified by characteristic weeks, days, hours, or
blocks per year.

2. Investment options –The number of investment options is de-
termined by the number of competing resource technologies (in-
cluding DER), the number of candidate resource locations, and the
number of deployable circuit technologies (e.g., AC/DC and voltage
class) and candidate locations.

3. Transmission representation – There are two transmission models
that can be used: a transportation model or an impedance model. If a
transportation model is used, then the transmission expansion
model operates on only line capacities, so the problem remains a
linear program (LP). If the higher-fidelity impedance model is used,
the transmission expansion model may still operate only on line
capacities and remain an LP, but in this case, impedances of ex-
panded lines are inaccurate; fidelity is gained if a disjunctive
transmission model is used, but at a significant computational ex-
pense, as the problem then becomes a mixed-integer LP [25]. A
commonly used compromise is the hybrid model that employs an
impedance model for existing transmission and a transportation

model for new transmission [26]. Other variants include the binary
disjunctive model [27] and iterative models.

4. Scenarios – In handling uncertainty, additional scenarios enhance
the robustness of solutions to uncertainties but heavily increase
computation time.

5. Number of extreme events – Inclusion of extreme events, for resi-
lience evaluation, within the CEP can significantly increase com-
putation time.

6. Network Size – One may represent the network in varying degrees of
granularity, in terms of aggregation of buses, generators, loads, and
circuits.

Adjustments of the previously described six categories of features
are made through either the input data or through the planning model
itself. Additional options exist for reducing compute time at higher le-
vels of model fidelity. We describe two such methods, the first is de-
ployment of decomposition algorithms; the second is to provide dy-
namic model resizing. There are various approaches for deploying
decomposition methods, however, three that are prevalent throughout
long term planning research include Benders [28], Danzig Wolf [29],
and progressive hedging [30]. These methods rely on structural features
of the problem that enable the full program to be broken into sub-
problems that are solved separately. Because compute time for math-
ematical programs can grow exponentially with problem size, the in-
dividual subproblems solve much faster than the full problem. This
benefit comes with a cost, in that the solution procedure must iterate
multiple times between master and subproblems. For problems with
decomposable structure, which CEP problems generally have, the re-
duction in compute time for a single iteration usually outweighs the
increased cost of multiple iterations. Related R&D directions includes
deployment of multiple solution methods, as in [31] where Benders and
Lagrangian relaxation were used, and as in [32] where two decom-
position methods were nested with one operating on the subproblem of
the other. Decomposition is also a natural step towards efficient par-
allelization via the inherent partitioning associated with subproblems.
Another promising approach is to decompose by time period [33],
geographical region [34], long-run scenario [35], or by a combination.

Dynamic model resizing (DMR) performs CEP on reduced-size
models, but then at certain progressively increasing times during the
decision horizon, generation and transmission investment results are
translated to a full-size model. The reduced model is then redeveloped,
a CEP is performed using the new reduced model with a time-shifted
decision horizon, and the process is repeated. In Fig. 4, we illustrate this
approach by combining it with the external production simulation of

Fig. 3. Features affecting CEP compute time and model fidelity (Adapted from [1]).
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Fig. 1. Thus, this combined approach enables computational benefits
from performing CEP on a reduced model while simultaneously main-
taining modeling fidelity within the full-size model. In addition, instead
of performing a single topology and temporal reduction based on the
year-1 infrastructure and conditions [10], DMR accounts for the influ-
ence of model reduction on changes in infrastructure and conditions
throughout the decision horizon.

An R&D objective central to these approaches is to develop a general
systematic procedure for designing CEP solvers. Development of this pro-
cedure will require identifying model parameters that depend on the in-
vestments made during the decision horizon. For example, wind turbine
capacity credit depends heavily on how much wind is installed and on its
geographic diversity. On the other hand, rapid declines in solar technology
costs might be considered independent of how much solar technology is
installed in a specific grid as the technology is rapidly maturing and
economies of scale are driven by global demand.

When model parameters are dependent on investments made during
the decision horizon it may be advantageous to build break points at
certain years into the optimization process to update model para-
meters to reflect that dependence. Dynamic model resizing has these
break points naturally built into its procedure so that it can be used to
increase model fidelity during them. While the break points eliminate
the ability of the optimization procedure to have foresight past the
break point, the loss of model fidelity from not updating model para-
meters may degrade solution quality more than the loss of this fore-
sight when model parameters heavily depend on investment
decisions. However, if model parameters are largely independent of
investments made during the decision horizon then it may be ad-
vantageous to use decomposition methods as they generally do not have
break points that can limit the optimization procedure’s foresight and
thus solution quality. The potential advantages listed for each method
are hypothesized and quantitative experimentation, would allow for a
deeper understanding of the appropriate use of each.

6. Weather

Individual weather events such as hurricanes, floods, and sustained
extreme temperatures are often the focus of weather-related phe-
nomena affecting the power grid. However, higher penetrations of re-
newables and demand side technologies requires increased focus on
short and long term weather phenomena (as well as forecasting accu-
racy which can vary widely from one region to another) as it will likely
impact which resources are the best options to build. While some
weather effects are well-understood (such as wind power dependence
on wind speed and solar irradiance variation due to clouds), others are
less-so and therefore require appropriate attention within CEP models.
This is particularly true for temperature, which impacts wind power
through its effect on air density, solar power through its effect on solar
cell temperature, thermal generated power through its impact on
cooling water temperature, and load due to its impact on cooling/
heating loads (which has been well-studied) but also through its impact
on charging speeds for electric vehicles (which has not).

A second issue that requires consideration when CEP is used to
study scenarios with deep penetrations of weather dependent technol-
ogies, is that the weather data used should select appropriate temporal

and spatial dimensions. This is to ensure that that changes occurring
during a time step can actually occur within the entirety of a single
spatial cell. For example, a 200-km spatial resolution and a 1-minute
temporal resolution is, together, a poor resolution choice because it
represents 1 min changes in weather occurring throughout the entirety
of a 40,000 km2 region, phenomenon that is faster than any atmo-
spheric wave can travel [36].

Finally, long term planning should account for climate change. An
appropriate source of data for doing so includes the Coupled Model
Intercomparison Project datasets [37]. Ideally, the CEP would evaluate
representative concentration pathways to adjust the historical weather
data based on climate values. The space of possible solutions could then
be explored deterministically through sensitivity analysis or with sto-
chastic multi-scenario-based methods.

There are three substantive R&D issues related to weather and CEP
modeling. First, there is need to develop systematic methods for redu-
cing weather model data such that it represents a granularity consistent
with the temporal and spatial scales of the CEP model. Second, high
value would result from an ability to mine such data to determine the
weather phenomena most critical to power system operation. Third,
when considering CEP decision horizons spanning multiple decades,
investments identified early will, via their impact on greenhouse gas
emissions, influence climate and subsequent meteorological conditions
affecting power system operation, an issue further complicated in that it
is a global rather than local phenomena. This raises the following
question: Can scenario analysis capture the effects of climate change or
does the feedback between investment decisions and climate change
need to be modeled within the optimization formulation?

7. Resilience

The industry has traditionally designed and built electric infra-
structure to satisfy so-called “credible” contingencies. These con-
tingencies, generally including single and double-component outages,
are specified by categories B and C of the North American Reliability
Corporation (NERC)’s disturbance-performance table [38]. However,
there are additional disturbance types that can result in significantly
increased societal costs for weeks and months. Traditionally, such
events have been classified as NERC Category D events with the only
requirement being to “evaluate for risks and consequences” [38].
However, such events do occur, and the resulting system performance is
highly influenced by the installed equipment and the integration of this
equipment via system design. The term “resilience” is used to refer to
system performance pertaining to survival and speed of recovery fol-
lowing such events [39].

Existing CEP models need the ability to identify design strategies for
electric infrastructure, at both transmission and distribution levels, to
enable improved performance under extreme events, in the context of
four central concepts:

1. Performance for extreme events sets: Categories of high-impact low-
probability events that drive resilience include natural disasters
(including hurricanes, earthquakes, wildfires, floods, tsunamis, and
geomagnetic disturbances), cyber-attacks, and cascading outages. A
specific extreme event will uniquely influence infrastructure

Fig. 4. CEP with external chronological production simulation and dynamic model resizing (DMR).
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operation resulting in event-specific impacts and costs. However,
there are infrastructure design features that facilitate good perfor-
mance across several, and possibly most, types of extreme events.
For example, network connectedness (i.e., ratio of number of
branches to number of nodes), is such a feature because it creates
increased and redundant capacity to allow resource sharing across
the network. To identify a resilience level for a particular power
system, it is necessary to do so relative to an extreme event set.

2. Resilience-oriented design: The emphasis here is on identification of
resilience-oriented design strategies, an emphasis born from the fact
that CEP is an infrastructure design tool. Thus, it is desirable to
incorporate within CEP the ability to identify good tradeoffs be-
tween cost, investments to facilitate normal operation, and invest-
ments to enhance resilience to extreme events (in terms of both the
early impact as well as recovery period), while accounting for the
interdependency between design and operations.

3. Operating conditions: Investments to enhance resilience are identi-
fied under extreme event conditions; yet, they also must be com-
peted against investments that facilitate normal conditions. This
requires that the CEP represent operating conditions within the
decision-horizon to capture both extreme events and normal con-
ditions. It may be necessary to weight within the objective function
resilience-related benefits relative to expansion-related benefits.

4. Resilience upgrades: Certain expansion investments increase capa-
city in a way that simultaneously enhances resilience. However,
some resilience upgrades do not enhance expansion, e.g., those that
improve the ability of equipment to resist degradation. For example,
transmission structures may be strengthened to reduce their failure
probability during hurricanes, an action which enhances resilience
but adds no capacity and therefore offers no benefit that can be
captured by a CEP formulation that does not account for event
probability. One may address this, on average over the planning
horizon, by representing line capacity as Pmax(1-FOR) where Pmax is
the circuit’s MW rating, and FOR is the circuit’s forced outage rate
(which decreases with resilience enhancements). In addition, the
relationships between resilience enhancements and their char-
acterizations (e.g., through FOR reduction) within the expansion
planning application are typically better-developed external to the
CEP.

There are three main R&D issues associated with resilience mod-
eling in expansion planning applications. First, there is need for de-
veloping criteria and guidelines for selecting a portfolio of specific ex-
treme events to drive resilience evaluation. Second, one must model
extreme events within the CEP to appropriately weigh their impact
against that of capacity shortage during normal conditions. Third,
technology options to enhance resilience for each extreme event type
should be identified, and modeling should be developed that reflects
the benefit of such technologies in the context of the objective function.

8. Multisector modeling approaches

Multisector models pertaining to the electric power system often
seek to attain synergies between the electric power sector and natural
gas, transportation, and/or water infrastructures. As described in [40],
multisector models can be categorized as bottom-up, top-down, or hy-
brid models. As indicated in [40], bottom-up models such as [41] are
generally optimizers, similar to CEP, that identify technology portfolios
over time to minimize costs; such models incorporate explicit, refined
descriptions of technologies and are generally preferred in engineering
applications. Top-down models like [42] are macroeconomic [40]; they
attempt to capture the performance of the energy-economic system
rather than the behavior of individual firms. They usually include the
influence of macroeconomic variables such as wages, consumption, and
interest rates. Finally, hybrid models like [43] combine elements of
bottom-up and top-down models [40].

Coupling infrastructures with the electric power sector is often
touted as increasing grid flexibility [44] or reducing congestion [45] as
operational and investment decisions are selected for optimal co-
ordinated operation across infrastructures. Representative examples of
multisector models that seek to combine the electric power system with
natural gas, transportation, and water infrastructures include [46,47],
and [48], respectively. In each of these examples the second infra-
structure is largely connected to the electric power sector through a
power-balance equation which ensures that at each node and time step
energy is conserved. In [46], for each node in the system, net gas im-
ports plus total gas production at each node is equated to the sum of
electric and non-electric demands. In [47], transportation infrastructure
is included in the power-balance equation of the long-term plan with
the addition of a term for energy demand of transported commodities.
Reference [48] also contains a power-balance equation at an interface
node connecting the electric and secondary (in this case, water) infra-
structure. In this work, demand is decomposed into all non-water-re-
lated demand and a decision variable that represents water-related
demand. Within the water model the latter term is selected by the op-
timizer to allow greater flexibility for electrical system loads.

There are four R&D issues related to CEP multisector modeling.
First, it is of interest to determine the mutual benefits of the top-down/
bottom-up modeling approaches to identify the extent to which they
should be deployed for use via a hybrid model. Second, modeling
capability should be developed to capture the effects of inter-sector
loading within the CEP, enhancing the fuel supply models used on the
electric side and the supply demand elasticity on the natural gas side.
Third, electric-water models should be developed to capture the water
temperature effects on thermal plants; in addition, water related energy
loads (e.g., water and wastewater treatment plants) should be studied
to determine the extent to which they may offer demand flexibility for
the grid. Finally, a modular, flexible multisector code should be de-
veloped that enables user-choice of sectors to model and a fidelity level
for each sector.

9. Performance evaluation

The CEP identifies future system expansions to minimize overall
costs while satisfying constraints on operations, investments, and en-
vironmental impacts. Because the plan is generated within an optimi-
zation framework, it performs well subject to the conditions (including
uncertainties) under which it was produced. Because of the CEP’s
computational intensity, those conditions must necessarily be limited
by allowing for selection of only a relatively few scenarios. For this
reason, we desire a computationally inexpensive way to test and eval-
uate a plan and to compete one plan against another, under conditions
independent of the ones for which each plan is generated. In effect, we
need a sort of “virtual lab bench” on which we can experimentally test
each theoretic (computed) plan, i.e., we need an objective way to
evaluate plan performance.

There are six main attributes that facilitate a well-designed perfor-
mance evaluation approach:

1. Out-of-sample scenarios: During the planning phase, scenarios are
necessarily restricted to maintain satisfactory compute-times. Thus,
we design the performance evaluation approach so that the plan is
exposed to out-of-sample scenarios, i.e., scenarios that were not
considered in developing the plan.

2. Monte Carlo Simulation: The performance evaluation should be able
to expose the plan to a large number of out-of-sample scenarios. If
the out-of-sample scenarios are generated based on distributions
associated with the uncertainties, this becomes a Monte Carlo
Simulation.

3. Recourse: The performance evaluation must be capable of adapting
the original plan to provide model feasibility when exposed to
especially stressful scenarios, capturing both benefits and costs of

P. Maloney, et al. Electrical Power and Energy Systems 121 (2020) 106089

7



strategies related to underbuilding and overbuilding. Thus, the tool
identifies value in building robustly and value in restraining in-
vestment to avoid stranded investments. Recalling that the long-
term cost of a plan computed by the planning tool is a function of
only a limited number of (in-sample) scenarios, and the long-term
cost of a plan computed by the performance evaluation tool is a
function of many more (out-of-sample) scenarios, we might expect a
mature performance validation tool to generate results that exhibit a
“U”-shape similar to that shown in Fig. 5.

4. Lead time: Technology lead times are often approximated in CEP by
assuming the delay between the decision to construct a new in-
vestment and when it becomes operational is identical among all
technologies. However, this misses two key benefits of short lead
time technologies; (1) the ability to delay costs leads to reduced net
present value of those costs due to the discount rate, and (2) re-
course response to alleviate stressed operating conditions can be
much quicker and thus reduce operational costs the conditions will
cause (e.g., higher production costs and/or increased load shedding
costs).

5. Performance measure: A performance measure for a plan exposed to
a single set of out-of-sample conditions is total cost which includes
operational, investment and recourse. For a Monte Carlo based si-
mulation, average costs, standard deviation, and worst-case costs
are appropriate.

6. Computational Speed: The performance evaluation should be sig-
nificantly faster than the CEP. This is because in the CEP, the years,
blocks, and scenarios are coupled, to enable optimization across all
of them. However, because performance evaluation is a simulation
(and not a design process), this coupling is unnecessary. Elimination
of this coupling allows for solution of much smaller problems and
thus much lower compute time.

These concepts underlie a performance evaluation approach called
the folding horizon simulation (FHS), first demonstrated in [49], and
later extended in [24]. This approach should be further explored via
three additional R&D directions. First, we observe that DMR, as de-
scribed in Section 5, is in its implementation closely related to FHS. It is
of interest to examine both approaches, focusing on the question of
whether FHS can be used for design as well as performance evaluation.
Second, how do we define and tune our validation methodologies such
that they attain a proper balance of both rewarding building robustly
for the future and reducing costs by only constructing the most critical
assets? How do we determine what this balance should be in a way that
is agnostic to the particular planning method used to generate the plan?

Finally, the interpretation of recourse should reasonably match how
recourse would be achieved in reality. For example, if we are validating
from the perspective of the “planner,” then there is no inconsistency

with discovering an issue at a particular time step, and then pre-
emptively correcting the issue at a previous time step. However, if the
validation takes the perspective of the “plan implementer,” then a more
realistic model for recourse would be to discover an issue at a particular
time step and react to the issue in the following time step.

10. Conclusions

Driven by pressing environmental constraints, today, the way hu-
mans generate, transmit, distribute, and use electric energy is under-
going a worldwide transformation. Large centralized thermal gen-
erating stations connected at the high-voltage level are being displaced
by wind, solar, and other distributed resources connected at both the
high voltage and the lower voltage levels. Because the associated
equipment is highly capital-intensive, equipment lives are very long,
and the impact on economic competitiveness is so large, there is strong
motivation to guide this transformation. CEP is the tool of choice to
provide this guidance, because it enables identification of good deci-
sions across resources and transmission, in terms of investments, in-
vestment portfolios, and policies, and how those decisions play out as
the future unfolds.

This work investigates existing state-of-the-art methods and tools
used to perform coordinated expansion planning (CEP). Additionally, it
provides an R&D agenda that outlines what the authors believe are
critical steps to advancing the maturity of these tools in areas that are
extremely relevant to the issues presently faced by grid planners. Eight
application areas are identified in this work which if further developed
would vastly improve the state-of-the art CEP method in terms of the
accuracy, flexibility, computation time, reliability, and cost effective-
ness. These eight application areas include; (1) modernizing our market
models, (2) four needs for additional modeling fidelity within the CEP,
(3) representing uncertainty in expansion planning, (4) systematic ways
to address computational complexity, (5) weather representation im-
provements, (6) improved consideration of resilience, (7) capturing the
electric power systems interdependencies with other infrastructures,
and (8) plan validation post optimization. These eight areas represent
high value research areas which if adequately addressed will allow
planners to successfully leverage present day computing resources to
meet the future’s most pressing grid planning issues through highly
effective CEP software applications. Specific needs are addressed in
each of these areas.
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